more-itertools项目中is_sorted函数的优化与改进
more-itertools是一个提供额外迭代器工具的Python库,其中is_sorted函数用于判断一个可迭代对象是否已排序。最近社区对该函数的实现进行了深入讨论和优化,使其行为更加符合预期且性能更优。
原有实现的问题
原is_sorted函数实现存在几个关键问题:
-
逻辑双重否定:函数使用了与预期相反的比较操作符,然后通过not any来反转结果,这种双重否定增加了理解难度。
-
边界情况处理不一致:对于包含NaN值的列表,原函数会错误地返回True,而实际上NaN值会使排序变得无意义。
-
与内置sorted行为不一致:当可迭代对象包含特殊比较行为的元素时,函数结果与Python内置sorted函数的结果可能不同。
优化方案
经过社区讨论,最终采纳的优化方案具有以下特点:
-
直接使用符合直觉的比较操作:不再使用双重否定逻辑,而是直接使用与sorted函数一致的比较方式。
-
更高效的实现:通过itertools.tee创建两个迭代器,避免了starmap和pairwise的开销。
-
严格模式支持:通过strict参数支持严格排序检查,使用le(小于等于)或lt(小于)操作符。
优化后的核心代码如下:
def is_sorted(iterable, key=None, reverse=False, strict=False):
compare = le if strict else lt
it = iterable if key is None else map(key, iterable)
it1, it2 = tee(it)
next(it2 if reverse else it1, None)
return not any(map(compare, it1, it2))
性能对比
性能测试显示,新实现在大多数情况下都有显著提升:
- 对于100个元素的列表:6.3μs → 4.6μs (提升27%)
- 对于1000个元素的列表:59.3μs → 40.8μs (提升31%)
- 对于10000个元素的列表:583.9μs → 405.0μs (提升31%)
仅在极小列表(1个元素)时,新实现略慢(421.8ns → 629.9ns),这是由于初始化开销略高,但对实际应用影响很小。
技术考量
-
与sorted行为的一致性:新实现尽可能接近Python内置sorted函数的行为,使用相同的比较逻辑。
-
特殊值处理:正确处理NaN等特殊值,确保结果符合数学和编程直觉。
-
稳定性:通过全面测试确保在各种边界条件下都能正确工作,包括空列表、单元素列表、包含特殊对象的列表等。
总结
这次优化不仅提高了is_sorted函数的性能,更重要的是使其行为更加一致和可预测。通过简化比较逻辑和优化迭代器使用,函数现在能更好地服务于各种排序检查场景,同时保持与Python标准库行为的一致性。这是开源社区协作改进代码质量的典型案例,展示了通过技术讨论和测试驱动开发可以实现的代码优化效果。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C061
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00