Ponder项目0.10.15版本发布:性能优化与指标增强
Ponder是一个专注于区块链数据索引和处理的开发框架,旨在帮助开发者高效地从区块链网络中提取和处理数据。该项目通过提供强大的工具链和API,简化了与区块链交互的复杂性,使开发者能够专注于业务逻辑的实现。
性能优化
本次0.10.15版本带来了多项性能改进,特别是在RPC请求处理和合约调用方面:
-
RPC请求性能提升:通过跳过对已回滚请求的重试机制,显著提高了RPC请求的整体性能。这一优化减少了不必要的网络延迟,特别是在处理大量请求时效果更为明显。
-
合约调用优化:对
context.client.readContract()和context.client.multicall()方法进行了性能调优。这些方法现在能够更高效地处理合约读取操作,特别是在批量查询场景下表现更为出色。
监控指标增强
新版本引入了三个重要的监控指标,为开发者提供了更深入的性能洞察:
-
ponder_indexing_rpc_action_duration:测量RPC操作的执行时间,帮助开发者识别潜在的性能瓶颈。
-
ponder_indexing_rpc_prefetch_total:统计预取操作的总数,有助于理解系统的预取行为模式。
-
ponder_indexing_rpc_requests_total:记录RPC请求的总数,为系统负载分析提供基础数据。
这些指标为开发者提供了更全面的系统监控能力,使得性能调优和问题诊断变得更加容易。
SQL查询验证改进
本次更新还加强了SQL查询的验证机制,提高了系统的稳定性和安全性。改进后的验证过程能够更准确地识别潜在的问题查询,防止无效或危险的SQL语句执行,从而保护数据完整性。
总结
Ponder 0.10.15版本通过多项性能优化和监控增强,进一步提升了框架的稳定性和效率。这些改进使得开发者能够构建更可靠、更高性能的区块链数据处理应用,特别是在处理大规模数据时优势更为明显。新引入的监控指标也为系统运维和性能调优提供了有力工具。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00