在Llama Index项目中实现AgentWorkflow与SQLTableRetrieverQueryEngine的LLM模型共享
2025-05-02 03:25:44作者:俞予舒Fleming
在Llama Index项目中构建复杂的AI工作流时,经常需要将大型语言模型(LLM)实例共享给多个组件使用。本文将详细介绍如何在AgentWorkflow和SQLTableRetrieverQueryEngine之间实现LLM模型的共享配置。
核心问题背景
当开发者使用Llama Index构建包含多个组件的AI系统时,特别是将AgentWorkflow与SQLTableRetrieverQueryEngine结合使用时,确保所有组件使用相同的LLM实例非常重要。这不仅能保持模型行为的一致性,还能优化资源利用。
解决方案实现
1. 统一LLM实例初始化
首先需要在项目中创建一个统一的LLM实例。对于OpenAI模型,可以这样初始化:
from llama_index.llms.openai import OpenAI
# 创建全局LLM实例
llm = OpenAI(model="gpt-4o", api_key="your-api-key")
2. 配置SQLTableRetrieverQueryEngine
在配置SQL查询引擎时,将LLM实例作为参数传入:
from llama_index.core.indices.struct_store.sql_query import SQLTableRetrieverQueryEngine
query_engine = SQLTableRetrieverQueryEngine(
sql_database,
obj_index.as_retriever(similarity_top_k=1),
llm=llm # 传入共享的LLM实例
)
3. 配置FunctionAgent
同样地,在创建FunctionAgent时也使用相同的LLM实例:
from llama_index.core.agent.workflow import FunctionAgent
research_agent = FunctionAgent(
name="ResearchAgent",
description="用于搜索网络信息并记录笔记",
system_prompt="...",
llm=llm, # 使用相同的LLM实例
tools=[search_web, record_notes],
can_handoff_to=["WriteAgent"]
)
跨文件共享的最佳实践
当项目结构较复杂,组件分布在多个文件中时,推荐采用以下模式:
- 创建专门的配置文件(如
config.py)存放LLM实例 - 在各组件文件中导入该共享实例
示例配置文件:
# config.py
from llama_index.llms.openai import OpenAI
llm = OpenAI(model="gpt-4o", api_key="your-api-key")
然后在其他文件中引用:
# function_agent.py
from config import llm
# 使用llm实例创建agent...
# tools.py
from config import llm
# 使用llm实例创建工具...
技术优势
这种共享配置方式具有以下优点:
- 一致性:确保所有组件使用相同的模型版本和配置
- 可维护性:只需在一个地方修改模型参数
- 资源优化:避免重复创建模型实例
- 调试便利:更容易追踪模型行为
扩展应用
这种模式不仅适用于AgentWorkflow和SQL查询引擎,还可以推广到:
- 多个Agent之间的模型共享
- 不同检索器之间的配置统一
- 评估组件与生产组件的模型一致性
总结
在Llama Index项目中,通过集中管理LLM实例并在各组件间共享,可以构建更加一致和高效的AI系统。这种模式特别适合复杂工作流场景,是构建生产级AI应用的重要实践。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868