Optax项目中LBFGS优化器与64位精度扫描计算的兼容性问题分析
2025-07-07 05:22:18作者:咎岭娴Homer
在深度学习优化领域,JAX生态下的Optax库因其丰富的优化算法实现而广受欢迎。近期在使用过程中,开发者发现当启用64位浮点精度时,LBFGS优化器与扫描计算(scan)结合使用会出现类型不匹配的问题,这一现象值得深入探讨。
问题现象
当用户尝试在64位精度环境下(通过设置jax_enable_x64=True)使用optax.lbfgs优化器配合equinox.internal.scan进行迭代优化时,系统会抛出类型不匹配错误。具体表现为优化器状态中的num_linesearch_steps字段在迭代过程中从i64类型意外变为i32类型,导致扫描计算无法继续执行。
技术背景
LBFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)是一种准牛顿优化算法,它通过近似Hessian矩阵来实现高效的二阶优化。在Optax实现中,该算法维护了多个状态变量,包括:
- 参数更新历史(diff_params_memory)
- 梯度更新历史(diff_updates_memory)
- 线搜索信息(ZoomLinesearchInfo)
扫描计算(scan)是函数式编程中常见的模式,它允许高效地执行固定次数的循环迭代,同时保持自动微分能力。Equinox库提供了增强版的scan实现,包含检查点等高级特性。
问题根源
深入分析表明,该问题源于Optax库内部对线搜索步数计数器(num_linesearch_steps)的类型处理不一致。在64位模式下:
- 初始状态创建时,计数器被正确初始化为64位整数(i64)
- 但在线搜索过程中,某些内部操作导致该值被隐式转换为32位整数(i32)
- 这种类型变化违反了扫描计算要求的状态一致性原则
临时解决方案
在官方修复发布前,开发者可以采用以下临时解决方案:
- 在每次迭代后手动将优化器状态转换为与前次状态相同的类型
- 使用jax.tree.map对状态树进行递归类型转换
- 或者暂时在32位精度下运行优化过程
技术启示
这个案例揭示了几个重要的技术要点:
- 混合精度计算时需要特别注意类型一致性
- 高阶优化算法的状态管理较为复杂,容易在类型转换时出现问题
- 函数式编程范式下的循环结构对状态不变性有严格要求
最佳实践建议
为避免类似问题,建议开发者:
- 在启用非标准精度时进行全面测试
- 对优化器状态进行显式类型声明
- 使用类型检查工具验证中间状态
- 关注官方库的更新,及时应用相关修复
该问题的出现和解决过程,为深度学习框架中类型系统的设计提供了有价值的实践经验,也提醒我们在高性能数值计算中需要更加严谨地处理类型转换问题。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp全栈开发课程中React实验项目的分类修正7 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp课程页面空白问题的技术分析与解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133