AlpacaEval项目中的胜率计算机制解析
在AlpacaEval 2.0评估框架中,胜率计算是一个核心指标,但不同类型的胜率计算方式存在重要差异。本文将深入分析标准胜率(win rate)和离散胜率(discrete win rate)的计算方法及其技术实现。
加权胜率计算原理
AlpacaEval 2.0默认使用的评估标注器(weighted_alpaca_eval_gpt4_turbo)采用了一种概率加权的方式计算胜率。这种计算方法不是简单地统计胜负次数,而是基于标注器对每个比较结果赋予的获胜概率值进行加权计算。
具体来说,当标注器判断一个模型输出优于另一个时,它不仅给出胜负判断,还会给出一个概率值表示这个判断的置信度。胜率计算会将这些概率值纳入考量,而不是简单地计为1次胜利。这种方法能够更精细地反映模型间的相对优势程度。
离散胜率的计算方式
与加权胜率不同,离散胜率采用传统的计数方法。它简单地统计三种结果的数量:
- 模型A获胜次数(n_wins)
- 基准模型获胜次数(n_wins_base)
- 平局次数(n_draws)
然后通过公式计算:n_wins / (n_wins + n_wins_base + n_draws)。这种计算方式不考虑置信度,每个比较结果都被平等对待。
两种计算方式的适用场景
在AlpacaEval中,标注器名称以"weighted_"开头的会使用概率加权胜率计算,而其他标注器则默认使用离散胜率计算。这种设计使得框架能够根据评估需求灵活选择计算方式:
-
概率加权胜率:适用于需要精细区分模型间微小差异的场景,能够捕捉到模型优势的"程度"而不仅仅是"方向"。
-
离散胜率:适用于需要简单直观比较的场景,结果更容易解释,但可能丢失一些细微差别信息。
实现细节
在技术实现上,AlpacaEval通过两个独立的函数分别处理这两种计算方式。对于概率加权胜率,系统会累加所有比较中的概率值;而对于离散胜率,则进行简单的计数统计。这种模块化设计使得添加新的评估标注器时能够自动选择适当的计算方式。
理解这些差异对于正确解读AlpacaEval的评估结果至关重要,特别是在比较使用不同标注器的评估时,需要注意它们可能采用了不同的胜率计算方式。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00