LLaMA-Factory项目中设置最小学习率(min_lr)的技术指南
2025-05-02 22:27:58作者:何将鹤
在LLaMA-Factory项目中使用cosine_with_min_lr
学习率调度器时,开发者可能会遇到如何设置最小学习率(min_lr)的问题。本文将详细介绍这一技术细节及其解决方案。
学习率调度器概述
cosine_with_min_lr
是一种基于余弦退火的学习率调度策略,它在训练过程中按照余弦函数曲线调整学习率,同时确保学习率不会低于预设的最小值。这种调度方式特别适合深度学习模型的微调阶段,可以避免学习率过小导致训练停滞的问题。
问题背景
在LLaMA-Factory项目中,当用户选择cosine_with_min_lr
作为学习率调度器时,直接通过常规参数可能无法找到设置最小学习率(min_lr)的选项。这是因为该项目基于Hugging Face的Transformers库构建,相关参数需要通过特定的接口传递。
解决方案
正确的做法是使用Transformers库中TrainingArguments的lr_scheduler_kwargs
参数。这个参数允许用户传递一个字典,其中可以包含学习率调度器需要的各种额外参数。
例如,要设置最小学习率为1e-5,可以在配置中添加:
lr_scheduler_kwargs = {"min_lr": 1e-5}
技术实现细节
-
参数传递机制:LLaMA-Factory内部会将所有训练参数传递给Hugging Face Trainer,包括
lr_scheduler_kwargs
中的额外参数。 -
调度器工作原理:
cosine_with_min_lr
会在训练过程中计算当前学习率,公式大致为:current_lr = min_lr + 0.5*(initial_lr - min_lr)*(1 + cos(progress*π))
其中progress是训练进度(0到1)。
-
参数验证:系统会自动验证min_lr的合理性,确保它小于初始学习率且大于0。
最佳实践建议
- 通常min_lr设置为初始学习率的1/10到1/100较为合适。
- 对于大型语言模型微调,建议min_lr在1e-6到1e-5之间。
- 可以结合warmup阶段使用,先线性增加学习率,再进行余弦退火。
通过正确设置最小学习率,开发者可以更好地控制模型训练后期的微调过程,提高模型性能同时避免训练停滞。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++020Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp课程视频测验中的Tab键导航问题解析6 freeCodeCamp论坛排行榜项目中的错误日志规范要求7 freeCodeCamp音乐播放器项目中的函数调用问题解析8 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

React Native鸿蒙化仓库
C++
195
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
359
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71