LLaMA-Factory项目中设置最小学习率(min_lr)的技术指南
2025-05-02 21:28:27作者:何将鹤
在LLaMA-Factory项目中使用cosine_with_min_lr学习率调度器时,开发者可能会遇到如何设置最小学习率(min_lr)的问题。本文将详细介绍这一技术细节及其解决方案。
学习率调度器概述
cosine_with_min_lr是一种基于余弦退火的学习率调度策略,它在训练过程中按照余弦函数曲线调整学习率,同时确保学习率不会低于预设的最小值。这种调度方式特别适合深度学习模型的微调阶段,可以避免学习率过小导致训练停滞的问题。
问题背景
在LLaMA-Factory项目中,当用户选择cosine_with_min_lr作为学习率调度器时,直接通过常规参数可能无法找到设置最小学习率(min_lr)的选项。这是因为该项目基于Hugging Face的Transformers库构建,相关参数需要通过特定的接口传递。
解决方案
正确的做法是使用Transformers库中TrainingArguments的lr_scheduler_kwargs参数。这个参数允许用户传递一个字典,其中可以包含学习率调度器需要的各种额外参数。
例如,要设置最小学习率为1e-5,可以在配置中添加:
lr_scheduler_kwargs = {"min_lr": 1e-5}
技术实现细节
-
参数传递机制:LLaMA-Factory内部会将所有训练参数传递给Hugging Face Trainer,包括
lr_scheduler_kwargs中的额外参数。 -
调度器工作原理:
cosine_with_min_lr会在训练过程中计算当前学习率,公式大致为:current_lr = min_lr + 0.5*(initial_lr - min_lr)*(1 + cos(progress*π))其中progress是训练进度(0到1)。
-
参数验证:系统会自动验证min_lr的合理性,确保它小于初始学习率且大于0。
最佳实践建议
- 通常min_lr设置为初始学习率的1/10到1/100较为合适。
- 对于大型语言模型微调,建议min_lr在1e-6到1e-5之间。
- 可以结合warmup阶段使用,先线性增加学习率,再进行余弦退火。
通过正确设置最小学习率,开发者可以更好地控制模型训练后期的微调过程,提高模型性能同时避免训练停滞。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136