Actions Runner Controller 中使用私有容器镜像的配置指南
问题背景
在使用 Actions Runner Controller (ARC) 的 gha-runner-scale-set 组件时,许多用户在尝试使用私有容器镜像作为 runner 模板时会遇到 ErrImagePull 错误。这种问题通常发生在将默认的公共镜像 ghcr.io/actions/actions-runner:latest 替换为私有镜像 ghcr.io/<组织名>/gha-runners:latest 时。
核心问题分析
当 Kubernetes 尝试从私有容器注册表拉取镜像时,需要提供适当的认证凭据。这个问题本质上是因为 runner pod 没有配置正确的 imagePullSecrets,导致无法从私有仓库拉取镜像。
解决方案
基础配置
正确的配置方法是在 runner 模板的 spec 部分添加 imagePullSecrets 字段:
template:
spec:
imagePullSecrets:
- name: github-pat # 这里使用你创建的 Secret 名称
containers:
- name: runner
image: ghcr.io/<my-org>/gha-runners:latest
command: ["/home/runner/run.sh"]
完整实施步骤
-
创建 Kubernetes Secret: 首先需要创建一个包含 GitHub 个人访问令牌(PAT)的 Secret:
kubectl create secret docker-registry github-pat \ --docker-server=ghcr.io \ --docker-username=<GitHub用户名> \ --docker-password=<个人访问令牌> \ --docker-email=<你的邮箱> -
验证 Secret: 确保 Secret 已正确创建并包含所需字段:
kubectl get secret github-pat -o yaml -
配置 Helm Values: 在 Helm chart 的 values 文件中添加 imagePullSecrets 配置:
imagePullSecrets: - name: github-pat -
部署验证: 部署后,检查 runner pod 是否能够正常启动并拉取镜像。
进阶问题:工作流中的容器镜像
值得注意的是,即使 runner pod 本身能够正常启动,当在工作流中使用 container.image 指定容器时,这些工作流 pod 不会自动继承 runner pod 的 imagePullSecrets 配置。这是因为:
- 工作流容器是通过容器钩子(container hooks)创建的
- 这些钩子会创建独立的 pod 规范
- 需要单独为这些工作流容器提供拉取凭据
最佳实践建议
- 统一凭证管理:考虑使用 Kubernetes 的 ServiceAccount 来集中管理镜像拉取凭据
- 最小权限原则:确保使用的 PAT 仅具有必要的权限(通常只需要 packages:read)
- 多环境支持:在不同环境(开发、测试、生产)中使用不同的凭证和镜像仓库
- 监控配置:定期检查 Secret 的有效性,特别是当使用 PAT 时,注意令牌的有效期
通过以上配置,用户可以在 Actions Runner Controller 中顺利使用私有容器镜像作为 runner,同时也能够处理工作流中使用的私有容器镜像的认证问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00