TorchAO 0.9.0发布:稀疏化技术升级与量化API重大革新
项目简介
TorchAO是PyTorch生态系统中的一个重要组件,专注于模型优化技术的研究与实现。作为PyTorch官方支持的模型优化工具库,TorchAO提供了包括量化、稀疏化等多种模型优化技术,帮助开发者在不显著损失模型精度的情况下,大幅提升模型推理和训练效率。
核心亮点
块稀疏技术正式发布
在0.9.0版本中,块稀疏技术从实验状态正式晋升为稳定功能。这项技术通过将权重矩阵划分为固定大小的块,并智能地选择保留或丢弃整个块,实现了模型的高效压缩和加速。
使用方式极为简洁:
from torchao.sparsity import sparsify, block_sparse_weight
sparsify_(model, block_sparse_weight(blocksize=64))
性能表现令人印象深刻,在Meta-Llama-3.1-8B模型上的测试显示:
- 使用64x64块大小和90%稀疏率时,解码速度提升近2倍(262.94 tok/s vs 134.40 tok/s)
- 模型大小从15.01GB压缩至4.88GB,减少了67%
量化API重大重构
0.9.0版本对量化API进行了全面重构,从基于可调用对象的配置方式转向更直观的配置对象模式。这一变化带来了三大优势:
- 与生态系统其他组件保持更好的一致性
- 配置实例化后可进行详细检查
- 消除了常见的混淆来源
新旧API对比示例:
# 旧版API(0.8.0及之前)
quantize_(model, int8_weight_only(group_size=128))
# 新版API(0.9.0及之后)
quantize_(model, Int8WeightOnlyConfig(group_size=128))
虽然旧版API仍可继续使用,但建议开发者逐步迁移到新版配置对象模式。
关键技术进展
超级掩码技术
0.9.0引入了Supermask技术,通过在训练阶段学习块稀疏掩码,显著提升了稀疏模型的精度。这一技术特别适合需要高精度稀疏模型的场景。
典型使用流程:
# 训练阶段使用Supermask
sparsify_(model, lambda x: SupermaskLinear.from_linear(x, block_size=64, sparsity_level=0.9))
# 训练完成后转换为标准线性层
sparsify_(model, lambda x: SupermaskLinear.to_linear(x, sparsity_level=0.9))
sparsify_(model, block_sparse_weight(blocksize=64))
4位动态量化新内核
新增了基于CUTLASS的W4A4(4位权重+4位激活)动态量化内核,为超低精度推理提供了新的可能性:
from torchao.quantization import int4_dynamic_activation_int4_weight
quantize_(model, int4_dynamic_activation_int4_weight)
实验性功能
MXFP8和MXFP4训练支持
针对NVIDIA Blackwell GPU,TorchAO 0.9.0提供了MXFP8和MXFP4训练与推理的早期支持。这些微缩格式为下一代硬件上的高效计算铺平了道路。
MX训练示例:
from torchao.prototype.mx_formats import swap_linear_with_mx_linear
config = MXLinearConfig(elem_dtype=torch.float8_e4m3fn, block_size=32)
swap_linear_with_mx_linear(model, config=config)
开发者工具改进
训练优化
- 在float8训练中支持2的幂次缩放因子
- 优化了FSDP内存使用,特别针对float8行级缩放训练
- 改进了float8训练中的配置API,使其更加直观
错误修复
- 修复了torch.intx在FakeQuantizeConfig中的支持问题
- 解决了DDP与nf4量化兼容性问题
- 修正了Marlin量化在SM<8.0设备上的编译问题
文档完善
0.9.0版本大幅更新了文档系统,包括:
- 新增稀疏化入门指南
- 更新支持的dtype列表
- 添加模块交换到张量子类的迁移教程
- 完善了静态量化教程
总结
TorchAO 0.9.0标志着该项目在模型优化技术上迈出了重要一步。块稀疏技术的成熟、量化API的重构以及多项新特性的加入,使得TorchAO在模型压缩和加速领域的能力得到全面提升。对于追求高效AI模型部署的开发者来说,这个版本提供了更多强有力的工具选择。
特别值得注意的是,TorchAO团队在保持API稳定性的同时,积极引入创新技术,如Supermask和MX格式支持,展现了项目的前瞻性。随着PyTorch生态系统的不断发展,TorchAO有望成为模型优化领域不可或缺的核心组件。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01