TorchAO 0.9.0发布:稀疏化技术升级与量化API重大革新
项目简介
TorchAO是PyTorch生态系统中的一个重要组件,专注于模型优化技术的研究与实现。作为PyTorch官方支持的模型优化工具库,TorchAO提供了包括量化、稀疏化等多种模型优化技术,帮助开发者在不显著损失模型精度的情况下,大幅提升模型推理和训练效率。
核心亮点
块稀疏技术正式发布
在0.9.0版本中,块稀疏技术从实验状态正式晋升为稳定功能。这项技术通过将权重矩阵划分为固定大小的块,并智能地选择保留或丢弃整个块,实现了模型的高效压缩和加速。
使用方式极为简洁:
from torchao.sparsity import sparsify, block_sparse_weight
sparsify_(model, block_sparse_weight(blocksize=64))
性能表现令人印象深刻,在Meta-Llama-3.1-8B模型上的测试显示:
- 使用64x64块大小和90%稀疏率时,解码速度提升近2倍(262.94 tok/s vs 134.40 tok/s)
- 模型大小从15.01GB压缩至4.88GB,减少了67%
量化API重大重构
0.9.0版本对量化API进行了全面重构,从基于可调用对象的配置方式转向更直观的配置对象模式。这一变化带来了三大优势:
- 与生态系统其他组件保持更好的一致性
- 配置实例化后可进行详细检查
- 消除了常见的混淆来源
新旧API对比示例:
# 旧版API(0.8.0及之前)
quantize_(model, int8_weight_only(group_size=128))
# 新版API(0.9.0及之后)
quantize_(model, Int8WeightOnlyConfig(group_size=128))
虽然旧版API仍可继续使用,但建议开发者逐步迁移到新版配置对象模式。
关键技术进展
超级掩码技术
0.9.0引入了Supermask技术,通过在训练阶段学习块稀疏掩码,显著提升了稀疏模型的精度。这一技术特别适合需要高精度稀疏模型的场景。
典型使用流程:
# 训练阶段使用Supermask
sparsify_(model, lambda x: SupermaskLinear.from_linear(x, block_size=64, sparsity_level=0.9))
# 训练完成后转换为标准线性层
sparsify_(model, lambda x: SupermaskLinear.to_linear(x, sparsity_level=0.9))
sparsify_(model, block_sparse_weight(blocksize=64))
4位动态量化新内核
新增了基于CUTLASS的W4A4(4位权重+4位激活)动态量化内核,为超低精度推理提供了新的可能性:
from torchao.quantization import int4_dynamic_activation_int4_weight
quantize_(model, int4_dynamic_activation_int4_weight)
实验性功能
MXFP8和MXFP4训练支持
针对NVIDIA Blackwell GPU,TorchAO 0.9.0提供了MXFP8和MXFP4训练与推理的早期支持。这些微缩格式为下一代硬件上的高效计算铺平了道路。
MX训练示例:
from torchao.prototype.mx_formats import swap_linear_with_mx_linear
config = MXLinearConfig(elem_dtype=torch.float8_e4m3fn, block_size=32)
swap_linear_with_mx_linear(model, config=config)
开发者工具改进
训练优化
- 在float8训练中支持2的幂次缩放因子
- 优化了FSDP内存使用,特别针对float8行级缩放训练
- 改进了float8训练中的配置API,使其更加直观
错误修复
- 修复了torch.intx在FakeQuantizeConfig中的支持问题
- 解决了DDP与nf4量化兼容性问题
- 修正了Marlin量化在SM<8.0设备上的编译问题
文档完善
0.9.0版本大幅更新了文档系统,包括:
- 新增稀疏化入门指南
- 更新支持的dtype列表
- 添加模块交换到张量子类的迁移教程
- 完善了静态量化教程
总结
TorchAO 0.9.0标志着该项目在模型优化技术上迈出了重要一步。块稀疏技术的成熟、量化API的重构以及多项新特性的加入,使得TorchAO在模型压缩和加速领域的能力得到全面提升。对于追求高效AI模型部署的开发者来说,这个版本提供了更多强有力的工具选择。
特别值得注意的是,TorchAO团队在保持API稳定性的同时,积极引入创新技术,如Supermask和MX格式支持,展现了项目的前瞻性。随着PyTorch生态系统的不断发展,TorchAO有望成为模型优化领域不可或缺的核心组件。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00