PostgreSQL全文检索利器:pg_bigm模块详解
2025-06-29 22:48:35作者:谭伦延
什么是pg_bigm
pg_bigm是PostgreSQL数据库的一个全文检索扩展模块,它采用2-gram(二元语法)分词技术为数据库提供高效的文本搜索能力。与PostgreSQL内置的pg_trgm(三元语法)模块相比,pg_bigm在处理亚洲语言(特别是日语和中文)时表现更优,且在短关键词搜索场景下性能更佳。
核心特性与技术原理
2-gram分词技术
pg_bigm的核心是2-gram分词算法,其工作原理如下:
- 对文本进行预处理,在开头和结尾添加空格
- 将文本按2个字符为单位进行切分
- 例如"数据库"会被切分为:" 数"、"数据"、"据库"、"库 "
这种分词方式特别适合处理没有明显分隔符的亚洲语言文本,相比基于空格的西方语言分词方法,2-gram能更准确地捕捉亚洲语言的语义特征。
与pg_trgm的对比
| 特性 | pg_trgm (3-gram) | pg_bigm (2-gram) |
|---|---|---|
| 分词方式 | 三元语法 | 二元语法 |
| 支持的索引类型 | GIN/GiST | 仅GIN |
| 支持的操作符 | LIKE/ILIKE/~/~* | 仅LIKE |
| 亚洲语言支持 | 有限支持 | 完整支持 |
| 短关键词搜索性能 | 较差 | 优秀 |
| 相似度搜索 | 支持 | 支持(1.1+) |
| 最大索引列大小 | ~228MB | ~102MB |
安装与配置指南
环境要求
pg_bigm支持以下环境:
- 操作系统:Linux、Mac OS X
- PostgreSQL版本:9.1及以上
安装步骤
-
编译安装PostgreSQL(如已安装可跳过)
tar zxf postgresql-X.Y.Z.tar.gz cd postgresql-X.Y.Z ./configure --prefix=/opt/pgsql-X.Y.Z make sudo make install -
安装pg_bigm模块
tar zxf pg_bigm-x.y-YYYYMMDD.tar.gz cd pg_bigm-x.y-YYYYMMDD make USE_PGXS=1 PG_CONFIG=/opt/pgsql-X.Y.Z/bin/pg_config sudo make USE_PGXS=1 PG_CONFIG=/opt/pgsql-X.Y.Z/bin/pg_config install -
数据库配置
- 修改postgresql.conf:
shared_preload_libraries = 'pg_bigm' - 对于PostgreSQL 9.1还需添加:
custom_variable_classes = 'pg_bigm'
- 修改postgresql.conf:
-
创建扩展
CREATE EXTENSION pg_bigm;
实际应用示例
全文检索实现
-
创建测试表并插入数据
CREATE TABLE products (name text, description text); INSERT INTO products VALUES ('智能手机', '高性能智能手机,配备最新处理器'), ('笔记本电脑', '轻薄笔记本电脑,超长续航'); -
创建GIN索引
CREATE INDEX products_idx ON products USING gin (description gin_bigm_ops); -
执行全文检索
SELECT * FROM products WHERE description LIKE '%笔记本%';
相似度搜索
pg_bigm提供了相似度搜索功能,可用于模糊匹配:
-- 设置相似度阈值
SET pg_bigm.similarity_limit TO 0.3;
-- 执行相似度搜索
SELECT name FROM products WHERE name =% '智能';
核心函数解析
likequery函数
将普通搜索字符串转换为LIKE操作符可识别的模式:
SELECT likequery('数据库性能');
-- 返回:%数据库性能%
show_bigm函数
显示字符串的2-gram分词结果:
SELECT show_bigm('全文检索');
-- 返回:{" 全","全文","文检","检索","索 "}
bigm_similarity函数
计算两个字符串的相似度(0-1):
SELECT bigm_similarity('数据库', '数据仓库');
-- 返回:0.4
性能调优参数
-
pg_bigm.enable_recheck
- 控制是否执行结果复核
- 生产环境应保持开启(默认on)
-
pg_bigm.gin_key_limit
- 限制用于索引搜索的2-gram数量
- 默认0(使用全部),可优化长文本搜索性能
-
pg_bigm.similarity_limit
- 设置相似度搜索的阈值(0-1)
- 默认0.3,值越大匹配越严格
注意事项
-
索引列大小限制
- 最大支持约102MB的列建立索引
- 超出限制会导致内存错误
-
与pg_trgm共存
- 1.1+版本可共存,1.0版本不可共存
-
大小写敏感
- 与pg_trgm不同,bigm_similarity区分大小写
适用场景推荐
pg_bigm特别适合以下应用场景:
- 亚洲语言(中日韩)的全文检索
- 短关键词搜索(1-2个字符)
- 需要高精度匹配的文本搜索
- 模糊搜索和相似度匹配需求
对于需要处理更大文本(>102MB)或需要GiST索引的场景,可考虑结合使用pg_trgm模块。
通过合理配置和使用pg_bigm,可以显著提升PostgreSQL在亚洲语言环境下的文本搜索体验和性能表现。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin06
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
517
3.68 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
874
557
Ascend Extension for PyTorch
Python
319
366
暂无简介
Dart
759
182
React Native鸿蒙化仓库
JavaScript
300
347
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
156
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
736
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
110
129