APIJSON项目分页查询性能优化实践
2025-05-12 05:00:19作者:裴麒琰
背景介绍
在APIJSON项目中,开发者rationalol遇到了一个典型的分页查询性能问题。当配置了分页功能后,查询效率急剧下降,从原来的毫秒级响应变成了秒级响应。这个问题在数据库查询量较大的场景下尤为明显。
问题现象
开发者在使用APIJSON进行分页查询时,发现接口响应时间从原来的0.2秒左右骤增至3秒以上。通过分析日志发现,系统执行了两条SQL语句:
- 数据查询SQL(执行时间0.187秒)
- COUNT查询SQL(执行时间较长)
其中COUNT查询是为了获取总记录数,以便前端显示分页信息。这个COUNT查询在数据量大的情况下会成为性能瓶颈。
技术分析
分页机制原理
APIJSON的分页功能默认会执行两条SQL:
- 获取当前页数据的查询
- 获取总记录数的COUNT查询
当query参数设置为2时,系统会执行COUNT查询。这个设计是为了满足需要显示总页数等信息的场景。
性能瓶颈原因
COUNT查询的性能问题主要来自以下几个方面:
- 使用了子查询结构
- 多表JOIN操作
- 缺乏适当的索引
在示例中,COUNT查询涉及三个表的JOIN操作,且没有为关联字段建立索引,导致数据库需要扫描大量数据才能计算出总记录数。
优化方案
方案一:添加适当索引
针对示例中的查询,可以添加以下索引来提升性能:
CREATE INDEX idx_call_record_phone_number ON `herui`.`Call_record` (`phone_number`);
CREATE INDEX idx_sale_customer_phone_number ON `herui`.`Sale_customer` (`phone_number`);
这些索引可以显著加快JOIN操作的执行速度,从而提升COUNT查询的性能。
方案二:调整分页策略
对于不需要显示总页数的场景(如移动端无限滚动加载),可以通过以下方式避免COUNT查询:
- 不传递query参数
- 将query参数设置为0
这样系统只会执行数据查询,不执行COUNT查询,可以大幅提升响应速度。
方案三:缓存分页信息
对于数据变化不频繁的场景,可以考虑:
- 缓存总记录数
- 定时更新缓存
- 在数据变更时主动刷新缓存
这种方式可以避免每次查询都执行COUNT操作。
最佳实践建议
- 根据实际需求选择是否启用COUNT查询
- 为常用查询条件建立适当的索引
- 对于大数据量表,考虑使用估算值代替精确COUNT
- 定期分析慢查询日志,持续优化数据库性能
- 在开发环境使用@explain功能分析SQL执行计划
总结
APIJSON项目的分页功能设计灵活,开发者可以根据实际场景选择最适合的配置方式。通过合理的索引设计和分页策略调整,可以显著提升查询性能。理解底层机制并根据业务特点进行优化,是保证系统高效运行的关键。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++036Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0283Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
160
2.03 K

deepin linux kernel
C
22
6

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
533
60

React Native鸿蒙化仓库
C++
198
279

Ascend Extension for PyTorch
Python
46
78

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
947
556

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
381
17

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
996
396