Locust分布式测试中RPS统计异常问题分析与解决
2025-05-07 22:35:28作者:曹令琨Iris
问题背景
Locust作为一款流行的负载测试工具,在分布式模式下使用时可能会出现请求速率(RPS)统计不准确的问题。具体表现为Web界面和命令行输出的RPS数值远低于实际服务器接收到的请求量。这种情况通常发生在高并发测试场景中,特别是当使用大量工作节点时。
问题现象
在测试过程中,用户观察到以下异常现象:
- Locust报告的峰值RPS约为14,000
- 实际服务器(varnish)监控显示接收到的RPS在100,000-200,000之间
- 服务器日志确认确实接收到了所有请求
- 问题仅出现在大规模分布式测试中(17台机器,170个工作节点)
根本原因分析
经过深入排查,发现问题根源在于工作节点之间的时间不同步。具体表现为:
- Locust的统计机制依赖于各工作节点上报数据时的时间戳
- 在分布式环境中,不同节点系统时间存在显著偏差(最高达160秒)
- 时间不同步导致统计聚合时数据错乱
- 高并发场景下,时间偏差的影响会被放大
技术细节
Locust的统计工作原理:
- 每个工作节点独立统计自己的请求数据
- 定期(默认1秒)向主节点上报统计数据
- 上报数据中包含时间戳和请求计数
- 主节点根据时间戳聚合所有工作节点的数据
当工作节点时间不同步时:
- 主节点无法正确对齐不同时间点的数据
- 部分请求会被统计到错误的时间段
- 导致RPS计算出现偏差
解决方案
针对此问题,推荐以下解决方案:
-
确保时间同步:
- 在所有测试节点上部署NTP服务
- 使用
ntpd
或chrony
保持时间同步 - 测试前检查各节点时间偏差
-
调整Locust配置:
- 设置合理的超时参数
class MyUser(FastHttpUser): connection_timeout = 5 network_timeout = 10
- 使用
--stop-timeout
确保测试正常结束
-
监控与验证:
- 在测试前后检查各节点系统时间
- 对比Locust统计与服务器实际接收的请求量
- 使用
--csv
参数导出详细统计数据进行分析
最佳实践
为避免类似问题,建议遵循以下Locust测试最佳实践:
-
环境准备阶段:
- 确保所有测试节点时间同步
- 检查网络连通性和稳定性
- 验证各节点Locust版本一致
-
测试配置方面:
- 根据测试规模合理设置超时参数
- 使用
--expect-workers
确保所有节点就绪 - 考虑使用
--headless
模式进行自动化测试
-
结果验证环节:
- 交叉验证Locust统计与服务器监控数据
- 对小规模测试先进行验证
- 逐步增加负载观察系统行为
总结
Locust在分布式负载测试中表现优异,但需要注意节点间的时间同步问题。通过确保环境一致性、合理配置参数以及建立完善的监控机制,可以有效避免RPS统计异常等问题,获得准确的性能测试结果。对于大规模测试场景,建议先进行小规模验证,再逐步扩大测试规模。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.26 K

暂无简介
Dart
526
116

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
582

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
42
0