LLaMA-Factory项目中vllm_infer.py生成文件的评分功能解析
2025-05-01 15:47:29作者:凌朦慧Richard
在LLaMA-Factory项目的实际应用中,用户在使用vllm_infer.py脚本生成预测结果时发现了一个功能缺失问题:生成的jsonl文件无法自动进行评分。本文将深入分析这一问题的技术背景、解决方案及其实现细节。
问题背景
在自然语言处理任务中,模型预测结果的评估是至关重要的环节。LLaMA-Factory项目原本提供了自动评分功能,但在使用vllm_infer.py脚本生成预测结果时,这一功能并未被包含。这导致用户需要手动处理生成的jsonl文件才能获得评估指标。
技术分析
评估自然语言生成模型通常使用以下几种指标:
- BLEU-4:衡量生成文本与参考文本在n-gram层面的匹配程度
- ROUGE:包括ROUGE-1、ROUGE-2和ROUGE-L,分别评估unigram、bigram和最长公共子序列的匹配情况
项目中原本在src/llamafactory/train/sft/metric.py中实现了这些评估指标的计算逻辑,但vllm_infer.py脚本未能集成这一功能。
解决方案实现
开发者从metric.py中提取了评分逻辑,创建了一个独立的评分脚本。该解决方案具有以下特点:
- 输入处理:读取jsonl格式的预测结果文件,提取预测文本(predict)和参考文本(label)
- 分词处理:使用jieba进行中文分词,这是评估中文文本的必要预处理步骤
- 指标计算:
- 对于ROUGE指标,使用rouge_chinese库计算
- 对于BLEU-4指标,使用nltk的sentence_bleu函数计算
- 结果输出:将各项指标的平均值输出到predictions_score.json文件
技术细节
评分脚本中特别处理了空文本的情况,避免计算错误。对于BLEU评分,使用了method3平滑函数来处理罕见n-gram的情况,这在小样本评估中尤为重要。
脚本还提供了友好的命令行接口,用户只需指定输入文件即可获得评估结果,大大简化了使用流程。
实际应用价值
这一改进使得LLaMA-Factory项目的评估流程更加完整,用户现在可以:
- 使用vllm_infer.py生成预测结果
- 使用评分脚本快速获得模型性能指标
- 基于指标结果进行模型调优或比较
这种模块化的设计也符合软件工程的最佳实践,使得各个功能组件保持独立且可复用。
总结
LLaMA-Factory项目通过这一改进完善了其评估流程,为用户提供了更完整的使用体验。这种针对特定需求快速响应的开发模式,也体现了开源项目的灵活性和实用性。对于自然语言处理领域的研究者和开发者而言,这种自动化的评估流程将大大提高工作效率。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
465

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
132
185

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
179
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
609
59

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4