LLaMA-Factory项目中vllm_infer.py生成文件的评分功能解析
2025-05-01 22:43:44作者:凌朦慧Richard
在LLaMA-Factory项目的实际应用中,用户在使用vllm_infer.py脚本生成预测结果时发现了一个功能缺失问题:生成的jsonl文件无法自动进行评分。本文将深入分析这一问题的技术背景、解决方案及其实现细节。
问题背景
在自然语言处理任务中,模型预测结果的评估是至关重要的环节。LLaMA-Factory项目原本提供了自动评分功能,但在使用vllm_infer.py脚本生成预测结果时,这一功能并未被包含。这导致用户需要手动处理生成的jsonl文件才能获得评估指标。
技术分析
评估自然语言生成模型通常使用以下几种指标:
- BLEU-4:衡量生成文本与参考文本在n-gram层面的匹配程度
- ROUGE:包括ROUGE-1、ROUGE-2和ROUGE-L,分别评估unigram、bigram和最长公共子序列的匹配情况
项目中原本在src/llamafactory/train/sft/metric.py中实现了这些评估指标的计算逻辑,但vllm_infer.py脚本未能集成这一功能。
解决方案实现
开发者从metric.py中提取了评分逻辑,创建了一个独立的评分脚本。该解决方案具有以下特点:
- 输入处理:读取jsonl格式的预测结果文件,提取预测文本(predict)和参考文本(label)
- 分词处理:使用jieba进行中文分词,这是评估中文文本的必要预处理步骤
- 指标计算:
- 对于ROUGE指标,使用rouge_chinese库计算
- 对于BLEU-4指标,使用nltk的sentence_bleu函数计算
- 结果输出:将各项指标的平均值输出到predictions_score.json文件
技术细节
评分脚本中特别处理了空文本的情况,避免计算错误。对于BLEU评分,使用了method3平滑函数来处理罕见n-gram的情况,这在小样本评估中尤为重要。
脚本还提供了友好的命令行接口,用户只需指定输入文件即可获得评估结果,大大简化了使用流程。
实际应用价值
这一改进使得LLaMA-Factory项目的评估流程更加完整,用户现在可以:
- 使用vllm_infer.py生成预测结果
- 使用评分脚本快速获得模型性能指标
- 基于指标结果进行模型调优或比较
这种模块化的设计也符合软件工程的最佳实践,使得各个功能组件保持独立且可复用。
总结
LLaMA-Factory项目通过这一改进完善了其评估流程,为用户提供了更完整的使用体验。这种针对特定需求快速响应的开发模式,也体现了开源项目的灵活性和实用性。对于自然语言处理领域的研究者和开发者而言,这种自动化的评估流程将大大提高工作效率。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881