Statistics-for-Machine-Learning 的安装和配置教程
2025-04-24 18:47:10作者:江焘钦
1. 项目基础介绍和主要编程语言
Statistics-for-Machine-Learning 是一个开源项目,旨在为机器学习提供统计学的相关知识和实践。该项目通过一系列的示例和案例,帮助用户理解并应用统计学原理来解决机器学习中遇到的问题。项目主要使用 Python 编程语言,Python 是一种广泛使用的解释型、高级编程语言,以其可读性和简洁的语法著称,非常适合数据科学和机器学习领域。
2. 项目使用的关键技术和框架
本项目使用了一些关键的Python库和框架,主要包括:
NumPy:用于数值计算的基础库,提供多维数组和矩阵运算的功能。Pandas:数据分析库,提供了快速、灵活、直观的数据结构,用于处理结构化数据。Matplotlib和Seaborn:数据可视化工具,用于绘制各种统计图表。Scikit-learn:机器学习库,提供了简单有效的数据预处理、模型选择、模型评估等方法。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
- 确保您的计算机上已安装 Python(推荐版本为 3.6 或更高)。
- 安装 pip(Python 包管理器),用于安装 Python 包。
- 建议使用虚拟环境来环境管理项目依赖,避免与其他项目冲突。
安装步骤
-
克隆项目到本地:
git clone https://github.com/PacktPublishing/Statistics-for-Machine-Learning.git -
进入项目目录:
cd Statistics-for-Machine-Learning -
创建虚拟环境(这一步骤可选,但推荐):
python -m venv venv -
激活虚拟环境:
-
Windows 用户:
.\venv\Scripts\activate -
Linux 和 macOS 用户:
source venv/bin/activate
-
-
安装项目依赖:
pip install -r requirements.txt
requirements.txt 文件中包含了项目运行所需的所有 Python 包。
完成以上步骤后,您就可以开始使用 Statistics-for-Machine-Learning 项目了。按照项目提供的示例和文档,您可以逐步学习并实践机器学习中的统计学知识。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C095
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
476
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
94
暂无简介
Dart
726
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
317
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19