Statistics-for-Machine-Learning 的安装和配置教程
2025-04-24 17:53:11作者:江焘钦
1. 项目基础介绍和主要编程语言
Statistics-for-Machine-Learning 是一个开源项目,旨在为机器学习提供统计学的相关知识和实践。该项目通过一系列的示例和案例,帮助用户理解并应用统计学原理来解决机器学习中遇到的问题。项目主要使用 Python 编程语言,Python 是一种广泛使用的解释型、高级编程语言,以其可读性和简洁的语法著称,非常适合数据科学和机器学习领域。
2. 项目使用的关键技术和框架
本项目使用了一些关键的Python库和框架,主要包括:
NumPy
:用于数值计算的基础库,提供多维数组和矩阵运算的功能。Pandas
:数据分析库,提供了快速、灵活、直观的数据结构,用于处理结构化数据。Matplotlib
和Seaborn
:数据可视化工具,用于绘制各种统计图表。Scikit-learn
:机器学习库,提供了简单有效的数据预处理、模型选择、模型评估等方法。
3. 项目安装和配置的准备工作及详细安装步骤
准备工作
- 确保您的计算机上已安装 Python(推荐版本为 3.6 或更高)。
- 安装 pip(Python 包管理器),用于安装 Python 包。
- 建议使用虚拟环境来环境管理项目依赖,避免与其他项目冲突。
安装步骤
-
克隆项目到本地:
git clone https://github.com/PacktPublishing/Statistics-for-Machine-Learning.git
-
进入项目目录:
cd Statistics-for-Machine-Learning
-
创建虚拟环境(这一步骤可选,但推荐):
python -m venv venv
-
激活虚拟环境:
-
Windows 用户:
.\venv\Scripts\activate
-
Linux 和 macOS 用户:
source venv/bin/activate
-
-
安装项目依赖:
pip install -r requirements.txt
requirements.txt
文件中包含了项目运行所需的所有 Python 包。
完成以上步骤后,您就可以开始使用 Statistics-for-Machine-Learning 项目了。按照项目提供的示例和文档,您可以逐步学习并实践机器学习中的统计学知识。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5