【亲测免费】 PyTorch至TensorRT转换器torch2trt安装与配置完全指南
2026-01-21 04:43:29作者:何举烈Damon
项目基础介绍及编程语言
torch2trt 是一个专为简化 PyTorch 模型到 Nvidia TensorRT 转换过程而设计的开源工具。它基于 Python 编程语言,允许开发者仅通过一个函数调用便能将 PyTorch 模块转换成 TensorRT 版本,从而提高推理速度和效率。该工具特别适用于 NVIDIA Jetson 系列硬件,如 JetBot 项目,但并不限于此场景,也可以应用于桌面系统上的模型优化。
关键技术和框架
- TensorRT: NVIDIA 提供的高性能深度学习推理(Inference)引擎,用于优化和部署深度神经网络。
- PyTorch: 流行的机器学习框架,以其易用性和动态计算图特性而著称。
- CMake: 用于跨平台编译和构建过程的自动化工具,在安装插件时会用到。
- Nvidia CUDA: 用于GPU编程的软件开发平台,确保在NVIDIA显卡上高效运行。
准备工作
在开始安装 torch2trt 前,需确保你的环境满足以下条件:
- Python: 安装最新版本的Python 3.x。
- PyTorch: 安装与你的CUDA版本兼容的PyTorch版本。
- TensorRT: 根据你的操作系统和硬件,遵循NVIDIA TensorRT官方安装指南,特别是对于Jetson设备,你需要通过最新的JetPack安装。
- Git: 用于克隆项目源码。
- CMake: 对于安装插件是必需的。
详细安装步骤
步骤一:获取项目源码
打开终端或命令提示符,使用Git克隆torch2trt仓库:
git clone https://github.com/NVIDIA-AI-IOT/torch2trt.git
cd torch2trt
步骤二:安装torch2trt基础库
只需执行以下命令来安装基本的torch2trt库:
python setup.py install
如果你想要使用额外的功能或自定义插件,跳转到可选步骤。
步骤三:验证安装
安装完成后,你可以通过简单的测试来验证torch2trt是否安装成功。如果需要,你可以通过导入库并尝试简单的模型转换代码来测试。
可选步骤:安装插件
若要启用更多支持或增强功能,比如特殊层的支持,你需要编译torch2trt的插件部分:
cmake -B build && cmake --build build --target install && ldconfig
这一步是可选的,适合需要自定义层转换或者扩展功能的高级用户。
开始使用
安装完毕后,你可以在你的PyTorch项目中导入torch2trt,按照项目文档中的说明进行模型的转换和优化。
例如,一个基本的使用示例包括加载预训练模型,准备数据,然后调用torch2trt进行转换。
import torch
from torch2trt import torch2trt
from torchvision.models import alexnet
model = alexnet(pretrained=True)
model.eval().cuda()
# 准备样本数据
x = torch.ones((1, 3, 224, 224)).cuda()
# 转换成TensorRT模型
model_trt = torch2trt(model, [x])
至此,你已成功安装并配置了torch2trt,可以开始享受快速的PyTorch模型推理体验了。记得,良好的实践还包括测试转换后的模型性能,确保精度符合预期。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.76 K
暂无简介
Dart
773
192
Ascend Extension for PyTorch
Python
343
405
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249