Liger-Kernel项目中CrossEntropyLoss在Triton解释模式下的问题分析
2025-06-10 03:19:35作者:韦蓉瑛
问题背景
在深度学习框架Liger-Kernel的使用过程中,开发者发现其实现的交叉熵损失函数LigerCrossEntropyLoss在特定条件下会出现输出始终为0的问题。经过深入排查,发现问题与Triton的interpret模式以及内存存储机制有关。
现象描述
当开发者使用LigerCrossEntropyLoss计算损失时,发现无论输入数据如何变化,输出结果始终为0。而同样的输入数据使用PyTorch原生的CrossEntropyLoss却能计算出正确的损失值。这一现象在启用了Triton解释模式(设置环境变量TRITON_INTERPRET=1)时尤为明显。
技术分析
Triton解释模式的限制
Triton解释模式主要用于调试目的,但在此模式下存在一些功能限制。特别是对于间接内存访问模式的支持不完善。在Liger-Kernel的交叉熵实现中,存在以下关键操作:
- 从输入张量加载数据
- 计算损失值
- 将结果存储回输出张量
问题根源
通过添加调试打印语句,开发者发现:
- 在kernel内部计算得到的损失值是正确的(通过tl.device_print验证)
- 但在kernel执行完毕后,从输出张量读取的值却全为0
深入代码分析发现,当return_z_loss=False且处于Triton解释模式时,loss_1d张量被错误地赋值为z_loss_1d的值,而后者未被正确初始化或更新,导致最终输出为0。
解决方案
该问题的修复方案包括:
- 确保在return_z_loss=False时正确初始化loss_1d张量
- 避免在解释模式下使用可能受限的内存访问模式
- 增加对Triton解释模式的兼容性检查
经验总结
这个案例揭示了几个重要的开发经验:
- 框架的调试模式可能引入与生产环境不同的行为
- 内存操作的正确性需要特别关注,尤其是在GPU加速计算中
- 数值计算组件的测试应该覆盖各种运行模式
- 调试工具(如打印语句)在定位GPU计算问题时非常有效
对于使用Liger-Kernel的开发者,建议在遇到类似问题时:
- 检查是否意外启用了调试/解释模式
- 验证中间计算结果而不仅仅是最终输出
- 对比不同实现(如与PyTorch原生函数)的行为差异
这个问题也提醒我们,在开发高性能计算组件时,需要充分考虑各种运行环境下的行为一致性,特别是当使用像Triton这样的编译器技术时,调试模式和生产模式可能存在显著差异。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896