pgvecto.rs 向量数据库FDW性能测试与分析
2025-07-05 20:50:27作者:廉彬冶Miranda
在数据库扩展领域,PostgreSQL Foreign Data Wrapper(FDW)是一种强大的功能,它允许用户将外部数据源当作本地表来查询。本文将深入探讨pgvecto.rs项目中关于FDW性能测试的技术细节,特别是向量数据库在跨服务器查询时的延迟表现。
测试背景与目的
pgvecto.rs是一个基于PostgreSQL的向量搜索扩展,它提供了高效的向量索引和查询能力。在实际应用中,用户可能需要通过FDW机制访问远程服务器上的向量数据。本次测试的主要目的是评估这种跨服务器查询的性能表现,特别是延迟和吞吐量指标。
测试环境搭建
测试环境需要配置两个PostgreSQL实例:
- 远程服务器:运行pgvecto.rs扩展,存储向量数据
- 本地服务器:配置postgres_fdw扩展,通过FDW访问远程数据
在远程服务器上,我们创建了包含10万条64维向量的测试表,并建立了向量索引。同时创建了专门的fdw_user用户用于FDW连接。
本地服务器配置了postgres_fdw扩展,建立了到远程服务器的连接映射,并通过IMPORT FOREIGN SCHEMA命令将远程表映射为本地外部表。
关键测试代码
测试主要包含两部分SQL操作:
- 远程服务器直接查询:
-- 创建测试表
CREATE TABLE remote (
id serial primary key,
vec vector(64) not null
);
-- 插入测试数据
INSERT INTO remote (vec)
SELECT array_fill(random(), array[64])::real[]
FROM generate_series(1, 100000);
-- 创建向量索引
CREATE INDEX ON remote USING vectors (vec vector_l2_ops);
-- 执行向量相似度查询
SELECT id, vec <-> array_fill(0.5, array[64])::real[] as rank
FROM remote
ORDER BY rank
LIMIT 10;
- 本地通过FDW查询:
-- 配置FDW连接
CREATE SERVER remote_server
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (
host 'xxx.pooler.supabase.com',
dbname 'postgres',
port '5432',
extensions 'vector'
);
-- 执行FDW查询
SELECT id, vec <-> array_fill(0.5, array[64])::vector as rank
FROM remote
ORDER BY rank
LIMIT 10;
性能分析与结论
测试结果表明,FDW查询的主要性能瓶颈在于网络延迟。在AWS US-west2a区域内的测试中,跨服务器查询的延迟大约在几毫秒级别。
值得注意的是,当远程服务器使用pgvector扩展(vector类型)而本地使用pgvecto.rs扩展(vectors类型)时,会出现类型不兼容的问题。这需要通过特殊配置解决,确保两端使用兼容的数据类型。
实际应用建议
对于生产环境部署,建议考虑以下几点:
- 尽量将需要频繁联合查询的表放在同一服务器上,避免FDW带来的网络开销
- 如果必须使用FDW,应考虑服务器之间的网络延迟和带宽
- 确保两端使用兼容的向量类型和操作符
- 对于大规模向量搜索,考虑在远程服务器完成搜索后只返回必要的结果集
通过合理的架构设计和性能优化,pgvecto.rs的FDW功能可以有效地支持分布式向量搜索场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C061
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 Python案例资源下载 - 从入门到精通的完整项目代码合集 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
451
3.36 K
Ascend Extension for PyTorch
Python
254
287
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
832
407
暂无简介
Dart
705
167
React Native鸿蒙化仓库
JavaScript
279
331
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
162
59
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.25 K
685
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19