pgvecto.rs 向量数据库FDW性能测试与分析
2025-07-05 20:50:27作者:廉彬冶Miranda
在数据库扩展领域,PostgreSQL Foreign Data Wrapper(FDW)是一种强大的功能,它允许用户将外部数据源当作本地表来查询。本文将深入探讨pgvecto.rs项目中关于FDW性能测试的技术细节,特别是向量数据库在跨服务器查询时的延迟表现。
测试背景与目的
pgvecto.rs是一个基于PostgreSQL的向量搜索扩展,它提供了高效的向量索引和查询能力。在实际应用中,用户可能需要通过FDW机制访问远程服务器上的向量数据。本次测试的主要目的是评估这种跨服务器查询的性能表现,特别是延迟和吞吐量指标。
测试环境搭建
测试环境需要配置两个PostgreSQL实例:
- 远程服务器:运行pgvecto.rs扩展,存储向量数据
- 本地服务器:配置postgres_fdw扩展,通过FDW访问远程数据
在远程服务器上,我们创建了包含10万条64维向量的测试表,并建立了向量索引。同时创建了专门的fdw_user用户用于FDW连接。
本地服务器配置了postgres_fdw扩展,建立了到远程服务器的连接映射,并通过IMPORT FOREIGN SCHEMA命令将远程表映射为本地外部表。
关键测试代码
测试主要包含两部分SQL操作:
- 远程服务器直接查询:
-- 创建测试表
CREATE TABLE remote (
id serial primary key,
vec vector(64) not null
);
-- 插入测试数据
INSERT INTO remote (vec)
SELECT array_fill(random(), array[64])::real[]
FROM generate_series(1, 100000);
-- 创建向量索引
CREATE INDEX ON remote USING vectors (vec vector_l2_ops);
-- 执行向量相似度查询
SELECT id, vec <-> array_fill(0.5, array[64])::real[] as rank
FROM remote
ORDER BY rank
LIMIT 10;
- 本地通过FDW查询:
-- 配置FDW连接
CREATE SERVER remote_server
FOREIGN DATA WRAPPER postgres_fdw
OPTIONS (
host 'xxx.pooler.supabase.com',
dbname 'postgres',
port '5432',
extensions 'vector'
);
-- 执行FDW查询
SELECT id, vec <-> array_fill(0.5, array[64])::vector as rank
FROM remote
ORDER BY rank
LIMIT 10;
性能分析与结论
测试结果表明,FDW查询的主要性能瓶颈在于网络延迟。在AWS US-west2a区域内的测试中,跨服务器查询的延迟大约在几毫秒级别。
值得注意的是,当远程服务器使用pgvector扩展(vector类型)而本地使用pgvecto.rs扩展(vectors类型)时,会出现类型不兼容的问题。这需要通过特殊配置解决,确保两端使用兼容的数据类型。
实际应用建议
对于生产环境部署,建议考虑以下几点:
- 尽量将需要频繁联合查询的表放在同一服务器上,避免FDW带来的网络开销
- 如果必须使用FDW,应考虑服务器之间的网络延迟和带宽
- 确保两端使用兼容的向量类型和操作符
- 对于大规模向量搜索,考虑在远程服务器完成搜索后只返回必要的结果集
通过合理的架构设计和性能优化,pgvecto.rs的FDW功能可以有效地支持分布式向量搜索场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217