Volcano调度器中的提名节点优化机制解析
2025-06-12 15:17:45作者:柯茵沙
背景介绍
Volcano作为Kubernetes的批处理调度系统,在处理大规模计算任务时面临着复杂的调度挑战。在实际生产环境中,我们经常会遇到这样的情况:一个任务由于资源不足暂时无法调度,但在经过抢占或回收操作后,该任务实际上已经具备了在某个节点上运行的条件。传统调度器在这种情况下往往需要重新进行完整的调度流程,造成了不必要的计算开销。
提名节点机制的设计思路
Volcano团队提出了一种创新的"提名节点"(nominated node)机制,其核心思想是记录那些已经通过管道化(pipelined)方式分配给任务的节点信息。这些节点在特定情况下已经被验证过适合运行该任务:
- 当节点上有正在终止的Pod且资源处于释放状态时,任务可以被管道化分配到该节点
- 当任务已经驱逐了节点上的其他Pod并被确认适合在该节点运行时
提名节点机制主要包含三个关键优化点:
- 记录管道化节点:对于通过抢占/回收操作获得运行权的任务,记录其目标节点信息
- 优先检查提名节点:在下一次调度周期中,首先检查提名节点是否仍然适合运行该任务
- 优化抢占流程:对于已有提名节点的任务,可以跳过抢占检查步骤
技术实现细节
提名节点机制的实现需要考虑多种调度场景:
- 分配操作(allocate action):当节点资源处于释放状态时,可以建立管道化分配
- 抢占/回收操作(preempt/reclaim action):任务驱逐其他Pod后,记录其适合运行的节点
特别值得注意的是,在回收(reclaim)操作中,原始实现使用的是ssn.Pipeline而非stmt.Pipeline,这导致未能正确设置提名节点信息。这个问题后来通过专门的修复进行了解决。
性能优化效果
通过引入提名节点机制,Volcano调度器获得了显著的性能提升:
- 减少预测开销:通过优先检查提名节点,避免了不必要的全量节点预测
- 提高调度效率:跳过已有提名节点任务的抢占检查,缩短了调度周期
- 增强调度确定性:确保任务尽可能运行在之前已验证过的节点上
实际应用价值
这一优化对于以下场景特别有价值:
- 大规模集群:节点数量多时,全量预测开销显著
- 资源竞争激烈环境:频繁发生抢占/回收的场景
- 长时间运行任务:需要多次调度尝试的任务
提名节点机制体现了Volcano调度器在批处理场景下的深度优化思路,通过记录和重用调度中间状态,有效提升了整体调度性能和资源利用率。这种机制也为其他分布式调度系统提供了有价值的参考设计模式。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
473
3.52 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
223
90
暂无简介
Dart
721
174
Ascend Extension for PyTorch
Python
283
316
React Native鸿蒙化仓库
JavaScript
286
338
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
438
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19