Volcano调度器中的提名节点优化机制解析
2025-06-12 20:40:50作者:柯茵沙
背景介绍
Volcano作为Kubernetes的批处理调度系统,在处理大规模计算任务时面临着复杂的调度挑战。在实际生产环境中,我们经常会遇到这样的情况:一个任务由于资源不足暂时无法调度,但在经过抢占或回收操作后,该任务实际上已经具备了在某个节点上运行的条件。传统调度器在这种情况下往往需要重新进行完整的调度流程,造成了不必要的计算开销。
提名节点机制的设计思路
Volcano团队提出了一种创新的"提名节点"(nominated node)机制,其核心思想是记录那些已经通过管道化(pipelined)方式分配给任务的节点信息。这些节点在特定情况下已经被验证过适合运行该任务:
- 当节点上有正在终止的Pod且资源处于释放状态时,任务可以被管道化分配到该节点
- 当任务已经驱逐了节点上的其他Pod并被确认适合在该节点运行时
提名节点机制主要包含三个关键优化点:
- 记录管道化节点:对于通过抢占/回收操作获得运行权的任务,记录其目标节点信息
- 优先检查提名节点:在下一次调度周期中,首先检查提名节点是否仍然适合运行该任务
- 优化抢占流程:对于已有提名节点的任务,可以跳过抢占检查步骤
技术实现细节
提名节点机制的实现需要考虑多种调度场景:
- 分配操作(allocate action):当节点资源处于释放状态时,可以建立管道化分配
- 抢占/回收操作(preempt/reclaim action):任务驱逐其他Pod后,记录其适合运行的节点
特别值得注意的是,在回收(reclaim)操作中,原始实现使用的是ssn.Pipeline而非stmt.Pipeline,这导致未能正确设置提名节点信息。这个问题后来通过专门的修复进行了解决。
性能优化效果
通过引入提名节点机制,Volcano调度器获得了显著的性能提升:
- 减少预测开销:通过优先检查提名节点,避免了不必要的全量节点预测
- 提高调度效率:跳过已有提名节点任务的抢占检查,缩短了调度周期
- 增强调度确定性:确保任务尽可能运行在之前已验证过的节点上
实际应用价值
这一优化对于以下场景特别有价值:
- 大规模集群:节点数量多时,全量预测开销显著
- 资源竞争激烈环境:频繁发生抢占/回收的场景
- 长时间运行任务:需要多次调度尝试的任务
提名节点机制体现了Volcano调度器在批处理场景下的深度优化思路,通过记录和重用调度中间状态,有效提升了整体调度性能和资源利用率。这种机制也为其他分布式调度系统提供了有价值的参考设计模式。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C028
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.25 K
Ascend Extension for PyTorch
Python
231
263
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869