首页
/ ClinicalBERT 开源项目使用教程

ClinicalBERT 开源项目使用教程

2024-09-13 01:16:35作者:仰钰奇

1. 项目介绍

ClinicalBERT 是一个基于双向 Transformer 的模型,专门用于处理临床笔记数据。该项目的目标是通过建模临床笔记来预测医院再入院情况。ClinicalBERT 在处理高维度和稀疏的临床笔记数据时表现出色,能够揭示高质量的医学概念之间的关系。该项目由 Kexin Huang、Jaan Altosaar 和 Rajesh Ranganath 等人开发,并在 CHIL 2020 研讨会上进行了介绍。

2. 项目快速启动

2.1 环境准备

首先,确保你已经安装了 Python 和必要的依赖库。你可以使用以下命令安装所需的依赖:

pip install pytorch-pretrained-bert

2.2 下载项目

使用 Git 克隆项目到本地:

git clone https://github.com/EmilyAlsentzer/clinicalBERT.git
cd clinicalBERT

2.3 数据准备

ClinicalBERT 使用 MIMIC-III 数据集进行训练和评估。你需要先获取 MIMIC-III 数据集,并按照项目要求进行预处理。数据文件应包含以下列:TEXTIDLabel

2.4 模型训练

使用以下命令进行模型训练:

python run_readmission.py \
  --task_name readmission \
  --do_train \
  --do_eval \
  --data_dir /path/to/your/data \
  --bert_model /path/to/pretraining \
  --max_seq_length 512 \
  --train_batch_size 32 \
  --learning_rate 2e-5 \
  --num_train_epochs 3 \
  --output_dir /path/to/output

2.5 模型评估

训练完成后,可以使用以下命令进行模型评估:

python run_readmission.py \
  --task_name readmission \
  --do_eval \
  --data_dir /path/to/your/data \
  --bert_model /path/to/pretraining \
  --max_seq_length 512 \
  --output_dir /path/to/output

3. 应用案例和最佳实践

3.1 医院再入院预测

ClinicalBERT 在医院再入院预测任务中表现优异。通过使用 ClinicalBERT 模型,医院可以更准确地预测患者在出院后30天内再次入院的风险,从而提前采取干预措施,提高医疗服务的质量和效率。

3.2 临床笔记分析

ClinicalBERT 还可以用于分析临床笔记中的医学概念之间的关系。通过模型的自注意力机制,研究人员可以深入理解临床笔记中的潜在关联,为医学研究和临床决策提供支持。

4. 典型生态项目

4.1 Hugging Face Transformers

ClinicalBERT 是基于 Hugging Face 的 Transformers 库实现的。Transformers 库提供了丰富的预训练模型和工具,支持多种自然语言处理任务。

4.2 MIMIC-III 数据集

MIMIC-III 是一个公开的临床数据集,包含了大量患者的电子健康记录。ClinicalBERT 使用 MIMIC-III 数据集进行训练和评估,展示了其在真实临床数据上的有效性。

4.3 PyTorch

ClinicalBERT 使用 PyTorch 作为深度学习框架。PyTorch 提供了灵活的 API 和强大的计算能力,支持高效的模型训练和推理。

通过以上步骤,你可以快速上手 ClinicalBERT 项目,并将其应用于临床数据分析和医院再入院预测等任务中。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.96 K
kernelkernel
deepin linux kernel
C
22
6
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
431
34
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
251
9
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
989
394
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69