Terraform AWS EKS模块中Karpenter在中国区的权限问题解析
背景介绍
在使用Terraform AWS EKS模块部署Kubernetes集群时,Karpenter作为自动节点伸缩组件,在中国区(如cn-north-1)运行时可能会遇到特定的IAM权限问题。这个问题表现为Karpenter无法正确执行iam:PassRole操作,导致节点无法正常创建。
问题本质
该问题的核心在于AWS中国区(aws-cn分区)与全球区(aws分区)在服务端点命名上的差异。AWS中国区的服务端点通常使用".amazonaws.com.cn"后缀,而全球区使用".amazonaws.com"后缀。当Karpenter尝试将IAM角色传递给EC2服务时,由于策略中只配置了全球区的服务端点,导致在中国区操作失败。
技术细节分析
在AWS IAM策略中,iam:PassRole操作通常需要配合iam:PassedToService条件使用,以限制角色只能传递给指定的AWS服务。原始策略中仅配置了"ec2.amazonaws.com"作为允许传递的目标服务,这在中国区环境下无法匹配实际的EC2服务端点"ec2.amazonaws.com.cn"。
解决方案演进
社区最初提出的解决方案是在策略中同时包含两种服务端点格式:
condition {
  test     = "StringEquals"
  variable = "iam:PassedToService"
  values   = ["ec2.amazonaws.com", "ec2.amazonaws.com.cn"]
}
这种方案简单直接,但可能不是最优雅的解决方案。另一种更动态的解决方案是使用Terraform的本地变量根据AWS分区自动选择正确的域名后缀:
aws_domain_suffix = local.partition == "aws-cn" ? "amazonaws.com.cn" : "amazonaws.com"
然后将其应用于策略条件中:
condition {
  test     = "StringEquals"
  variable = "iam:PassedToService"
  values   = ["ec2.${local.aws_domain_suffix}"]
}
官方推荐方案
值得注意的是,Karpenter官方文档推荐使用包含两种域名的方案,无论集群部署在哪个AWS分区。这种方案虽然看起来不够动态,但具有更好的兼容性和可读性,特别是在跨区域部署的场景下。
问题修复情况
该问题已在Terraform AWS EKS模块的20.24.1版本中得到修复。用户升级到该版本后,在中国区使用Karpenter时将不再遇到此权限问题。
最佳实践建议
对于在中国区使用AWS服务的用户,建议:
- 始终注意服务端点命名的差异
 - 在编写IAM策略时考虑跨区域兼容性
 - 定期更新Terraform模块到最新版本
 - 测试时特别注意权限相关的错误信息
 - 参考官方文档的推荐实践
 
总结
AWS中国区与全球区在服务端点命名上的差异是许多权限问题的根源。通过理解这一差异并采取适当的策略配置,可以确保Karpenter等组件在中国区环境中正常工作。Terraform AWS EKS模块已经通过更新解决了这一问题,为用户提供了更好的跨区域兼容性。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00