新闻推荐系统开源项目教程
2024-08-17 17:48:13作者:郦嵘贵Just
1. 项目的目录结构及介绍
NewsRecommendSystem/
├── data/
│ ├── raw/
│ ├── processed/
│ └── external/
├── models/
│ ├── __init__.py
│ ├── model1.py
│ └── model2.py
├── notebooks/
│ ├── exploration.ipynb
│ └── analysis.ipynb
├── src/
│ ├── __init__.py
│ ├── preprocessing.py
│ └── recommendation.py
├── tests/
│ ├── __init__.py
│ ├── test_preprocessing.py
│ └── test_recommendation.py
├── .gitignore
├── README.md
├── requirements.txt
├── setup.py
└── main.py
目录结构介绍
data/
: 存储数据文件,包括原始数据(raw/
)、处理后的数据(processed/
)和外部数据(external/
)。models/
: 存放模型相关的代码文件。notebooks/
: 存放Jupyter Notebook文件,用于数据探索和分析。src/
: 存放源代码文件,包括数据预处理(preprocessing.py
)和推荐算法(recommendation.py
)。tests/
: 存放测试代码文件,确保代码的正确性。.gitignore
: 指定Git版本控制系统忽略的文件和目录。README.md
: 项目说明文档。requirements.txt
: 项目依赖的Python包列表。setup.py
: 项目安装脚本。main.py
: 项目的启动文件。
2. 项目的启动文件介绍
main.py
main.py
是项目的启动文件,负责初始化配置、加载数据、调用推荐算法并输出推荐结果。以下是 main.py
的主要内容:
import configparser
from src.preprocessing import preprocess_data
from src.recommendation import recommend
def main():
# 读取配置文件
config = configparser.ConfigParser()
config.read('config.ini')
# 预处理数据
preprocessed_data = preprocess_data(config['DATA']['input_file'])
# 生成推荐结果
recommendations = recommend(preprocessed_data, config['MODEL']['model_file'])
# 输出推荐结果
print(recommendations)
if __name__ == "__main__":
main()
启动文件介绍
main.py
首先读取配置文件config.ini
。- 然后调用
src.preprocessing.preprocess_data
函数进行数据预处理。 - 接着调用
src.recommendation.recommend
函数生成推荐结果。 - 最后输出推荐结果。
3. 项目的配置文件介绍
config.ini
config.ini
是项目的配置文件,用于存储项目的各种配置参数,如数据文件路径、模型文件路径等。以下是 config.ini
的一个示例:
[DATA]
input_file = data/raw/news_data.csv
output_file = data/processed/processed_news_data.csv
[MODEL]
model_file = models/news_recommendation_model.pkl
[LOGGING]
log_file = logs/news_recommendation.log
配置文件介绍
[DATA]
部分包含数据相关的配置,如输入数据文件路径和输出数据文件路径。[MODEL]
部分包含模型相关的配置,如模型文件路径。[LOGGING]
部分包含日志相关的配置,如日志文件路径。
通过配置文件,可以方便地修改项目的各种参数,而无需修改代码。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5