XTuner多卡训练中的常见问题与解决方案
多卡训练报错分析
在使用XTuner进行多卡训练时,开发者可能会遇到类似"RuntimeError: Expected all tensors to be on the same device"的错误。这种情况通常发生在尝试使用多GPU进行模型微调时,而单卡训练却能正常运行。
经过分析,这类问题往往与DeepSpeed的配置有关。XTuner框架在底层使用了DeepSpeed来优化多GPU训练,因此需要确保DeepSpeed的正确安装和配置。
解决方案
要解决多卡训练的问题,可以按照以下步骤操作:
- 首先确保安装了正确版本的DeepSpeed:
pip install deepspeed==0.14.0
- 在启动训练命令时添加DeepSpeed配置参数:
NPROC_PER_NODE=2 xtuner train config_file.py --deepspeed deepspeed_zero2
其中,deepspeed_zero2是一种内存优化策略,也可以尝试使用deepspeed_zero1,具体选择取决于硬件配置和模型大小。
训练效果优化
在实际训练过程中,开发者可能会发现虽然loss值在下降,但模型似乎没有学到预期的知识。这种情况通常与以下几个训练参数有关:
-
accumulative_counts:这个参数控制梯度累积的步数,设置过大会导致参数更新频率降低,影响学习效果。建议根据实际情况调整,一般可以从较小的值开始尝试。
-
batch_size和max_length:这两个参数直接影响每次训练的数据量。虽然增大这些值理论上可以提高训练效率,但需要与GPU显存容量相匹配。过大的值可能导致模型无法有效学习。
-
prompt_template:对于chat模型,使用正确的prompt模板非常重要。InternLM2 chat模型应使用
PROMPT_TEMPLATE.internlm2_chat模板。
最佳实践建议
-
对于初次训练,建议使用较小的batch_size和max_length值,确保模型能够正常学习。
-
逐步调整accumulative_counts参数,观察训练效果变化。
-
监控训练过程中的loss变化和模型输出,及时调整参数。
-
对于多卡训练,确保所有GPU型号一致,驱动程序版本兼容。
通过合理配置这些参数,可以显著提高XTuner在多卡环境下的训练效果和稳定性。记住,训练参数的优化是一个迭代过程,需要根据具体任务和硬件环境进行调整。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00