【亲测免费】 Unity Perception 包使用教程
2026-01-30 04:45:58作者:韦蓉瑛
1. 项目介绍
Unity Perception 包是一个为计算机视觉训练和验证提供工具集的Unity插件。它能够生成大规模的合成数据集,适用于深度学习模型的训练和验证。该工具包提供了从数据生成到数据解析的完整流程,包括标签配置、相机捕获、数据集累积、随机化、输出端点和数据集模式等功能。
2. 项目快速启动
以下是在Unity项目中添加Perception包的基本步骤。
首先,确保你已经安装了Unity Editor。
// 1. 在Unity编辑器中,选择菜单栏的 "Assets" -> "Import Package" -> "Custom Package"
// 2. 选择下载的Perception包文件,点击 "Import" 开始导入
// 3. 导入完成后,你可以在 "Assets" 目录下找到 "com.unity.perception" 文件夹
// 接下来,创建一个Perception Camera
// 4. 在Hierarchy视图中,右击空白区域,选择 "Perception" -> "Perception Camera"
// 5. 选择创建的Perception Camera,在Inspector视图中配置相机参数
// 然后,添加Label Config
// 6. 在Hierarchy视图中,右击空白区域,选择 "Perception" -> "Label Config"
// 7. 配置标签,这些标签将用于标记场景中的对象
// 最后,配置输出端点
// 8. 在Hierarchy视图中,右击空白区域,选择 "Perception" -> "Output Endpoint"
// 9. 设置输出端点以输出数据,例如选择 "Solo endpoint" 或 "Perception endpoint"
3. 应用案例和最佳实践
合成数据生成教程
对于初学者来说,了解如何生成合成数据是第一步。Unity Perception 包提供了详细的教程,从安装Unity Editor到创建第一个合成数据生成项目。
- 使用Unity Editor创建新项目
- 添加Perception包和必要的组件
- 实现域随机化以增加数据多样性
- 可视化和分析生成的数据集
人体姿态标记和随机化教程
该教程详细介绍了如何使用Perception包中的人体关键点、姿态和动画随机化工具。
- 完成基础合成数据生成教程
- 标记场景中的人体姿态
- 应用随机化工具增强数据集
数据集分析与可视化
使用Unity的 pysolotools 和 Voxel51 Viewer 工具来分析和可视化数据集。
- 使用
pysolotools解析SOLO数据集 - 在Jupyter笔记本中查看数据集统计
- 使用
Voxel51 Viewer可视化数据集
4. 典型生态项目
以下是一些使用Unity Perception包的典型生态项目:
- Synthetic Homes: 提供了一个包含10万张注释合成家居内部图片的数据集,以及一个用于生成此类数据集的可配置Unity应用程序。
- Synthetic Humans: 该包能够 procedural 地生成和放置多样化的合成人类在Unity计算机视觉项目中。
- People Sans People: 这是一个以人为中心的隐私保护合成数据生成器,包含模拟就绪的3D人类资源和一个参数化的灯光和相机系统。
- SynthDet: 这是一个使用合成数据进行2D对象检测模型训练的端到端解决方案。
- Robotics Object Pose Estimation Demo: 这个项目演示了在Unity中使用机器人臂进行抓取和放置,包括使用ROS、导入URDF模型、使用Perception包收集标记训练数据以及训练和部署深度学习模型。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178