NonSteamLaunchers项目v4.2.0版本发布:新增Humble Games支持与多平台优化
NonSteamLaunchers是一个旨在帮助Steam Deck用户整合非Steam游戏平台的工具项目,它能够将这些平台中的游戏无缝集成到Steam的游戏模式中。最新发布的v4.2.0版本带来了多项重要更新,特别是对Humble Games Collection的支持以及跨平台功能的优化。
核心功能更新
Humble Games Collection扫描支持
本次更新的亮点是新增了对Humble Games Collection的扫描功能。这意味着用户现在可以直接将Humble平台上的游戏、合集和捆绑包中的内容扫描并添加到Steam的游戏模式中。这项功能的加入进一步扩展了NonSteamLaunchers的兼容性范围,为拥有Humble平台游戏的用户提供了更完整的整合体验。
艺术作品质量提升
开发团队持续优化了游戏艺术作品的生成质量。在v4.2.0版本中,艺术作品系统变得更加稳定,生成的封面和背景图质量也有显著提升。这对于追求完美游戏库展示效果的用户来说是一个重要的改进。
多平台版本优化
桌面版与插件版分离
v4.2.0版本对安装方式进行了重构,现在提供了两个独立的.desktop文件:
- 桌面版(Desktop Version):包含完整的NonSteamLaunchers功能,同时提供了安装最新版NSL Decky Loader插件的选项
- 插件版(Plugin Version):专为已安装Decky Loader的用户设计,可以单独更新插件而无需使用桌面模式
这种分离设计让不同使用场景的用户都能获得最合适的安装体验。
Windows平台支持改进
对于Windows用户,v4.2.0版本提供了更清晰的安装指南:
- 首先运行NSLPluginWindows.exe,这会创建必要的cef调试文件
- 然后选择运行No_console.exe或Plugin Loader.exe
- 进入游戏模式或大屏幕模式即可使用Decky Loader插件
需要注意的是,Windows版本目前仅支持游戏扫描功能,其他功能暂不可用。但扫描过程会自动为所有非Steam游戏添加适当格式的艺术作品,确保在Windows环境下的完美展示。
技术实现亮点
从技术角度看,v4.2.0版本的改进主要体现在以下几个方面:
- 扫描引擎增强:新增的Humble Games支持表明扫描引擎具有很好的扩展性,可以相对容易地加入对新平台的支持
- 跨平台兼容性:通过分离桌面版和插件版,项目更好地适应了不同用户的使用习惯和环境
- 艺术作品生成优化:持续改进的艺术作品系统展示了项目对用户体验细节的关注
使用建议
对于不同用户群体,我们建议:
- 新用户:直接从桌面版开始体验完整功能
- 已有Decky Loader的用户:使用插件版进行快速更新
- Windows用户:按照专门的Windows安装指南操作,特别注意运行顺序
这个版本的发布标志着NonSteamLaunchers项目在多平台支持和功能完善方面又迈出了重要一步,特别是对Humble Games用户来说是一个值得升级的版本。艺术作品系统的持续优化也体现了开发团队对细节的关注,相信会为用户带来更好的整体体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00