OpenRLHF项目中使用Kuberay部署Ray集群的技术指南
2025-06-03 12:04:32作者:庞眉杨Will
概述
在OpenRLHF项目中,使用Ray分布式计算框架进行大规模强化学习训练是一个常见需求。本文将详细介绍如何通过Kuberay在Kubernetes环境中部署Ray集群,并提交OpenRLHF训练任务。
Ray集群部署方案
方案一:手动部署Ray集群
对于小规模节点(3-5台)的环境,可以直接使用Ray CLI工具手动部署:
- 首先启动Head节点:
ray start --head --port=6379 --node-ip-address=10.0.0.1
- 然后依次启动Worker节点:
# Worker节点1
ray start --node-ip-address=10.0.0.2 --address=10.0.0.1:6379
# Worker节点2
ray start --node-ip-address=10.0.0.3 --address=10.0.0.1:6379
方案二:使用Kuberay部署
对于已有Kubernetes环境的用户,推荐使用Kuberay部署Ray集群:
- 基于OpenRLHF提供的vLLM Dockerfile构建基础镜像
- 配置Kuberay CRD资源定义Ray集群
- 部署Ray集群到Kubernetes环境
提交OpenRLHF训练任务
无论采用哪种方式部署Ray集群,提交训练任务的方式是统一的:
ray job submit --address="http://127.0.0.1:8265" \
--runtime-env-json='{"working_dir": "/openrlhf", "pip": "/openrlhf/requirements.txt"}' \
--no-wait \
-- python3 examples/train_ppo_ray.py \
...
关键注意事项
- SSH配置:在多节点环境中,确保节点间SSH免密登录配置正确
- 网络连通性:确保所有节点间的网络端口(如6379)可互通
- 资源隔离:同一Ray集群可同时运行多个训练任务,注意资源分配
- 监控调试:利用Ray Dashboard(8265端口)监控任务执行情况
最佳实践建议
- 对于生产环境,推荐使用Kuberay方案,便于管理和扩展
- 开发测试阶段可使用手动部署方式快速验证
- 根据训练任务规模合理规划节点资源配置
- 建议使用OpenRLHF提供的vLLM基础镜像,确保环境一致性
通过以上方案,用户可以灵活地在不同环境中部署Ray集群并运行OpenRLHF训练任务,满足从开发测试到生产部署的各种需求场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1