VMware Tanzu Educates 培训平台基于 Carvel 的安装指南
前言
VMware Tanzu Educates 培训平台是一个基于 Kubernetes 的现代化教学平台,专为技术培训和教育场景设计。本文将详细介绍如何使用 Carvel 工具集中的 kapp-controller 在现有 Kubernetes 集群上安装 Educates 平台。
Carvel 工具集简介
Carvel 是一套专为 Kubernetes 设计的工具集合,提供了一系列用于包管理和应用部署的解决方案。虽然安装 Educates 平台并不强制要求本地安装 Carvel 工具,但了解这些工具可以帮助您更好地管理 Kubernetes 应用。
准备工作
1. 确认 kapp-controller 状态
Educates 平台需要 Kubernetes 集群中预先安装 kapp-controller。如果您使用的是 Tanzu Kubernetes Grid (TKG) 或 Tanzu Mission Control (TMC) 创建的集群,kapp-controller 通常已经预装。
如需手动安装,执行以下命令:
kubectl apply -f https://github.com/vmware-tanzu/carvel-kapp-controller/releases/latest/download/release.yml
安装步骤
2. 创建安装服务账户
Educates 平台需要较高的权限来创建各种 Kubernetes 资源,因此需要创建具有 cluster-admin 权限的服务账户:
kubectl apply -f https://github.com/educates/educates-training-platform/releases/latest/download/educates-installer-app-rbac.yaml
此命令会创建:
- 名为
educates-installer的命名空间 - 具有必要权限的服务账户
3. 准备配置文件
创建一个包含 Educates 平台配置的 config.yaml 文件,然后将其存储为 Kubernetes Secret:
kubectl create secret generic educates-installer -n educates-installer --from-file config.yaml --save-config
4. 安装 Educates 平台
执行以下命令安装最新版 Educates:
kubectl apply -f https://github.com/educates/educates-training-platform/releases/latest/download/educates-installer-app.yaml
后期维护
5. 更新配置
如需更新配置,修改 config.yaml 后执行:
kubectl create secret generic educates-installer -n educates-installer --from-file config.yaml --dry-run=client -o yaml | kubectl apply -f -
6. 强制配置同步
使用 Carvel 的 kctrl 工具强制同步配置:
kctrl app kick -a installer.educates.dev -n educates-installer -y
注意:配置变更通常只影响新创建的培训门户,不影响已存在的环境。
卸载指南
7. 完全卸载 Educates
删除 Educates 平台及其相关资源:
kubectl delete -n educates-installer app/installer.educates.dev
8. 清理残留资源
手动清理命名空间和集群角色绑定:
kubectl delete namespace/educates-installer
kubectl delete clusterrolebinding/educates-installer
最佳实践建议
-
版本控制:建议在生产环境中使用特定版本而非最新版,以确保稳定性。
-
权限管理:虽然 Educates 需要 cluster-admin 权限,但在实际生产环境中应考虑更细粒度的权限控制。
-
配置备份:定期备份您的 config.yaml 文件,以便在需要时可以快速恢复。
-
监控:安装后建议设置对 educates-installer 命名空间的监控,及时发现潜在问题。
通过以上步骤,您应该能够顺利完成 VMware Tanzu Educates 培训平台的安装和基础配置。如需更高级的配置选项,建议参考官方文档中的详细配置参数说明。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00