LLRT 项目中的 CJS 与 ESM 模块互操作问题解析
在 JavaScript 运行时环境中,CommonJS (CJS) 和 ECMAScript Modules (ESM) 两种模块系统的互操作一直是个复杂的话题。近期在 LLRT 项目中,开发者们遇到了一个典型问题:无法通过 ESM 的 import 语句正确导入 CJS 模块。
问题现象
当尝试在 LLRT 中通过 ESM 的 import 语句导入一个 CJS 模块时,会出现找不到 'default' 导出的错误。例如,对于以下简单模块:
// hello.js
var hello = function world() {
return "hello world"
}
module.exports = hello;
如果尝试通过 ESM 方式导入:
// main.js
import hello from './hello.js'
console.log(hello())
LLRT 会抛出错误:"Could not find export 'default' in module"。相比之下,Node.js 和 Bun 运行时对此类情况有更好的处理能力。
技术背景
这个问题的根源在于两种模块系统的导出机制差异:
- CJS 模块:使用
module.exports导出,整个模块是一个对象 - ESM 模块:使用
export语法,可以有具名导出和默认导出
当通过 ESM 的 import 语句导入 CJS 模块时,运行时需要进行适当的包装转换。Node.js 和 Bun 都实现了这种转换逻辑,而 LLRT 目前对此的支持还不完善。
解决方案探讨
LLRT 项目团队考虑了多种解决方案:
-
文件扩展名检测:目前 LLRT 仅对
.cjs扩展名的文件进行 CJS 处理。当文件扩展名为.js或.mjs时,会严格按 ESM 规范检查。 -
自动检测机制:更复杂的方案是分析文件内容自动判断模块类型,但这会增加运行时开销。
-
环境变量控制:考虑引入
LLRT_IGNORE_CJS_CHECK等环境变量,让开发者可以灵活控制模块加载行为。 -
强制转换:将所有 require() 导入都视为 CJS 模块处理,同时支持混合导出语法。
最佳实践建议
对于 LLRT 开发者,目前可以采取以下方式解决此问题:
- 明确使用
.cjs扩展名标识 CJS 模块 - 避免在同一个文件中混用 CJS 和 ESM 语法
- 关注项目更新,等待更完善的模块互操作支持
未来方向
随着 JavaScript 生态的发展,模块系统的互操作性将越来越重要。LLRT 项目团队正在积极研究以下方向:
- 实现更智能的模块类型检测
- 优化模块加载性能
- 提供更灵活的配置选项
- 保持与其他运行时(Node.js, Bun等)的兼容性
这个问题反映了现代 JavaScript 运行时在模块系统支持上的复杂性,也展示了 LLRT 项目在追求轻量化的同时面临的挑战。随着项目的演进,相信会找到既保持性能又提供良好开发者体验的平衡点。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00