LLRT 项目中的 CJS 与 ESM 模块互操作问题解析
在 JavaScript 运行时环境中,CommonJS (CJS) 和 ECMAScript Modules (ESM) 两种模块系统的互操作一直是个复杂的话题。近期在 LLRT 项目中,开发者们遇到了一个典型问题:无法通过 ESM 的 import 语句正确导入 CJS 模块。
问题现象
当尝试在 LLRT 中通过 ESM 的 import 语句导入一个 CJS 模块时,会出现找不到 'default' 导出的错误。例如,对于以下简单模块:
// hello.js
var hello = function world() {
return "hello world"
}
module.exports = hello;
如果尝试通过 ESM 方式导入:
// main.js
import hello from './hello.js'
console.log(hello())
LLRT 会抛出错误:"Could not find export 'default' in module"。相比之下,Node.js 和 Bun 运行时对此类情况有更好的处理能力。
技术背景
这个问题的根源在于两种模块系统的导出机制差异:
- CJS 模块:使用
module.exports导出,整个模块是一个对象 - ESM 模块:使用
export语法,可以有具名导出和默认导出
当通过 ESM 的 import 语句导入 CJS 模块时,运行时需要进行适当的包装转换。Node.js 和 Bun 都实现了这种转换逻辑,而 LLRT 目前对此的支持还不完善。
解决方案探讨
LLRT 项目团队考虑了多种解决方案:
-
文件扩展名检测:目前 LLRT 仅对
.cjs扩展名的文件进行 CJS 处理。当文件扩展名为.js或.mjs时,会严格按 ESM 规范检查。 -
自动检测机制:更复杂的方案是分析文件内容自动判断模块类型,但这会增加运行时开销。
-
环境变量控制:考虑引入
LLRT_IGNORE_CJS_CHECK等环境变量,让开发者可以灵活控制模块加载行为。 -
强制转换:将所有 require() 导入都视为 CJS 模块处理,同时支持混合导出语法。
最佳实践建议
对于 LLRT 开发者,目前可以采取以下方式解决此问题:
- 明确使用
.cjs扩展名标识 CJS 模块 - 避免在同一个文件中混用 CJS 和 ESM 语法
- 关注项目更新,等待更完善的模块互操作支持
未来方向
随着 JavaScript 生态的发展,模块系统的互操作性将越来越重要。LLRT 项目团队正在积极研究以下方向:
- 实现更智能的模块类型检测
- 优化模块加载性能
- 提供更灵活的配置选项
- 保持与其他运行时(Node.js, Bun等)的兼容性
这个问题反映了现代 JavaScript 运行时在模块系统支持上的复杂性,也展示了 LLRT 项目在追求轻量化的同时面临的挑战。随着项目的演进,相信会找到既保持性能又提供良好开发者体验的平衡点。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00