AWS Deep Learning Containers发布PyTorch 2.4.0 Graviton推理容器
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组预构建的Docker镜像,这些镜像包含了流行的深度学习框架及其依赖项,可以帮助开发者快速部署深度学习工作负载。这些容器经过优化,可以直接在AWS云平台上运行,支持多种计算实例类型,包括最新的Graviton处理器。
本次发布的v1.24版本主要针对PyTorch 2.4.0框架,特别优化了在Graviton处理器上的推理性能。Graviton是AWS基于ARM架构自主研发的处理器系列,相比传统x86架构处理器,在性价比和能效比方面具有显著优势。
容器镜像特性
该版本提供了基于Ubuntu 22.04操作系统的PyTorch 2.4.0推理容器镜像,主要特点包括:
-
Python 3.11支持:容器内置Python 3.11环境,开发者可以使用最新的Python特性。
-
CPU优化:专为Graviton ARM架构CPU优化,不包含GPU支持。
-
完整工具链:包含PyTorch生态系统的完整工具链,如torchserve模型服务框架和torch-model-archiver模型归档工具。
-
科学计算支持:预装了NumPy、SciPy、Pandas等科学计算库,以及scikit-learn机器学习库。
-
图像处理能力:包含OpenCV 4.10.0和Pillow 11.0.0图像处理库。
关键软件版本
容器中集成了多个重要组件的特定版本:
- PyTorch核心:2.4.0+cpu版本
- TorchVision:0.19.0+cpu
- TorchAudio:2.4.0+cpu
- NumPy:1.26.4
- Pandas:2.2.3
- scikit-learn:1.5.2
- OpenCV:4.10.0.84
这些版本经过AWS团队的严格测试和验证,确保在Graviton处理器上的稳定性和性能表现。
开发环境支持
除了深度学习相关组件外,容器还包含了一些开发工具:
- 文本编辑:预装了Emacs编辑器及其相关组件
- 编译器支持:包含了GCC 10和11版本的开发库
- 标准库:提供了libstdc++的标准库支持
这些工具使得开发者可以直接在容器内进行代码编辑和调试工作,提高了开发效率。
适用场景
这个PyTorch Graviton推理容器特别适合以下应用场景:
-
成本敏感型推理服务:Graviton实例通常比同级别的x86实例价格更低,适合大规模部署的推理服务。
-
边缘计算:ARM架构的低功耗特性使其适合边缘设备部署。
-
批处理任务:对于不需要GPU加速的批处理推理任务,使用Graviton实例可以显著降低成本。
-
模型服务:内置的torchserve框架支持高性能模型服务部署。
AWS Deep Learning Containers的持续更新为开发者提供了更多选择,特别是对于希望在ARM架构上部署PyTorch应用的团队,这个版本提供了经过充分优化的解决方案。开发者可以直接使用这些预构建的镜像,避免了自己构建和优化环境的复杂过程,从而更快地将模型投入生产环境。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00