Logic-RL项目中的实验复线设置详解与优化建议
2025-07-02 18:50:37作者:申梦珏Efrain
实验设置概述
在Logic-RL项目中,训练过程通常分为三个阶段进行,每个阶段都有特定的数据集规模、训练参数和优化目标。这套训练方案最初是在计算资源有限的情况下设计的,但随着项目发展,作者发现了一些简化和优化的可能性。
原始三阶段训练方案
第一阶段训练配置
第一阶段主要使用3-4人规模的数据集进行初步训练。这一阶段的目的是让模型初步掌握基本的推理能力。典型配置包括:
- 训练周期:1个epoch
- 批量大小:8
- 初始学习率:1e-5至5e-6范围
- 采样次数(Rollout):32次
- 关键操作:需要直接修改奖励评分相关的核心代码
第二阶段训练配置
第二阶段扩展至3-7人规模的数据集,采用课程学习或全数据混合学习策略:
- 批量大小:保持8
- 温度参数:约1.2,同时调整top-p和top-k采样参数
- 学习率:降至4e-7
- 采样次数:提升至64次
- 训练步数:约3000步
- 策略:分阶段保存检查点以便手动继续训练
第三阶段训练配置
第三阶段进一步扩展至7-8人数据集或继续全数据学习:
- 批量大小:保持8
- 温度参数:从1.2逐步降至0.9
- 学习率:从4e-7递减至2e-7
- 采样次数:回调至32次
- 训练步数:约600步
- 训练策略:采用退火方法,保持第二阶段的基本框架
优化后的训练方案
经过项目实践发现,对于从指令微调模型开始训练的情况,可以采用更简化的方案:
- 学习率:固定4e-7(可能有更优值)
- 温度参数:固定0.7
- 训练步数:约3000步
- 优势:简化训练流程,效果相当
关键参数建议
-
采样次数(Rollout):研究表明更大的Rollout值通常带来更好的效果,在计算资源允许的情况下建议尽可能增大。
-
批量大小:同样地,更大的批量大小通常能提升训练效果,特别是在拥有充足计算资源时。
-
温度参数:简化方案中固定0.7表现良好,但原始方案中的动态调整策略(1.2→0.9)在特定场景下可能仍有优势。
-
学习率调度:虽然原始方案采用逐步下降策略,但实践表明固定学习率也能取得不错效果,简化了训练流程。
训练策略选择建议
对于不同资源条件的团队:
- 资源充足团队:建议采用大Rollout、大批量的简化方案,固定学习率和温度参数
- 资源有限团队:可考虑原始三阶段方案,通过精细的参数调度来优化训练效率
项目实践表明,在足够长的训练步数下(约3000步),不同训练方案的效果曲线最终会趋于接近,因此计算资源成为关键影响因素。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
464
3.46 K
Ascend Extension for PyTorch
Python
273
310
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
844
424
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692