Logic-RL项目中的实验复线设置详解与优化建议
2025-07-02 03:16:31作者:申梦珏Efrain
实验设置概述
在Logic-RL项目中,训练过程通常分为三个阶段进行,每个阶段都有特定的数据集规模、训练参数和优化目标。这套训练方案最初是在计算资源有限的情况下设计的,但随着项目发展,作者发现了一些简化和优化的可能性。
原始三阶段训练方案
第一阶段训练配置
第一阶段主要使用3-4人规模的数据集进行初步训练。这一阶段的目的是让模型初步掌握基本的推理能力。典型配置包括:
- 训练周期:1个epoch
- 批量大小:8
- 初始学习率:1e-5至5e-6范围
- 采样次数(Rollout):32次
- 关键操作:需要直接修改奖励评分相关的核心代码
第二阶段训练配置
第二阶段扩展至3-7人规模的数据集,采用课程学习或全数据混合学习策略:
- 批量大小:保持8
- 温度参数:约1.2,同时调整top-p和top-k采样参数
- 学习率:降至4e-7
- 采样次数:提升至64次
- 训练步数:约3000步
- 策略:分阶段保存检查点以便手动继续训练
第三阶段训练配置
第三阶段进一步扩展至7-8人数据集或继续全数据学习:
- 批量大小:保持8
- 温度参数:从1.2逐步降至0.9
- 学习率:从4e-7递减至2e-7
- 采样次数:回调至32次
- 训练步数:约600步
- 训练策略:采用退火方法,保持第二阶段的基本框架
优化后的训练方案
经过项目实践发现,对于从指令微调模型开始训练的情况,可以采用更简化的方案:
- 学习率:固定4e-7(可能有更优值)
- 温度参数:固定0.7
- 训练步数:约3000步
- 优势:简化训练流程,效果相当
关键参数建议
-
采样次数(Rollout):研究表明更大的Rollout值通常带来更好的效果,在计算资源允许的情况下建议尽可能增大。
-
批量大小:同样地,更大的批量大小通常能提升训练效果,特别是在拥有充足计算资源时。
-
温度参数:简化方案中固定0.7表现良好,但原始方案中的动态调整策略(1.2→0.9)在特定场景下可能仍有优势。
-
学习率调度:虽然原始方案采用逐步下降策略,但实践表明固定学习率也能取得不错效果,简化了训练流程。
训练策略选择建议
对于不同资源条件的团队:
- 资源充足团队:建议采用大Rollout、大批量的简化方案,固定学习率和温度参数
- 资源有限团队:可考虑原始三阶段方案,通过精细的参数调度来优化训练效率
项目实践表明,在足够长的训练步数下(约3000步),不同训练方案的效果曲线最终会趋于接近,因此计算资源成为关键影响因素。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134