PyTorch Geometric中的MoleculeGPT实现解析
2025-05-09 09:13:21作者:何举烈Damon
概述
PyTorch Geometric社区近期完成了一个重要项目——MoleculeGPT的实现,该项目基于论文《MoleculeGPT: Open Large-Scale Molecular Foundation Models》的研究成果。本文将深入解析该项目的技术细节、实现思路以及在PyTorch Geometric框架下的集成方式。
项目背景
MoleculeGPT是一种结合图神经网络(GNN)和大型语言模型(LLM)的分子基础模型,能够处理分子性质预测等任务。该项目的主要目标是在PyTorch Geometric框架中复现论文工作,同时充分利用PyG现有的GNN+LLM功能组件。
技术架构
数据集构建
MoleculeGPT的数据集采用三元组格式:<SMILES分子表示,指令,响应>。数据集构建是该项目最具挑战性的部分之一,需要从PubChem等公开数据库中提取和清洗数据,创建问答对形式的分子性质预测数据集。
模型结构
MoleculeGPT采用双分支架构:
-
2D图分支:
- 使用GINConv实现图同构网络
- 包含专门的QFormer注意力机制模块
-
1D SMILES分支:
- 基于ChemBERTa-2模型处理SMILES字符串
- 同样配备QFormer注意力机制
-
LLM部分:
- 采用vicuna-7B-v1.5作为基础语言模型
- 需要将1D和2D分支的分子表示与指令信息有效融合
实现细节
在PyTorch Geometric中的实现特别注重模块化和可复用性:
- 新增了QFormer注意力机制的PyG实现
- 充分利用了PyG现有的GINConv图卷积层
- 集成了处理SMILES字符串的化学专用语言模型
- 保持了与PyG现有LLM组件的兼容性
技术挑战与解决方案
-
数据预处理:
- 参考了MoleculeSTM项目的数据处理流程
- 采用了专门的SMILES编码器处理分子字符串
-
模型集成:
- 设计了统一的接口将图神经网络输出适配到语言模型
- 实现了高效的注意力机制桥接不同模态表示
-
性能优化:
- 利用了PyG的高效稀疏矩阵运算
- 实现了批处理加速训练过程
应用前景
该实现为分子科学领域的研究者提供了强大的工具,可以应用于:
- 分子性质预测
- 药物发现
- 材料设计
- 化学反应预测
总结
PyTorch Geometric中的MoleculeGPT实现展示了图神经网络与大型语言模型结合在分子科学中的巨大潜力。该项目不仅复现了原论文的方法,还通过模块化设计使其能够与PyG生态系统无缝集成,为后续相关研究提供了坚实的基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
432
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
351
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
689
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
79
37
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
671