在openai-agents-python项目中使用Azure OpenAI API的实践指南
2025-05-25 12:30:30作者:谭伦延
前言
随着大语言模型(LLM)技术的快速发展,越来越多的开发者希望将不同云服务提供商的LLM集成到自己的应用中。openai-agents-python作为一个功能强大的代理框架,提供了灵活的接口来支持多种LLM服务提供商。本文将详细介绍如何在openai-agents-python项目中使用Azure OpenAI API。
基本集成方法
在openai-agents-python中集成Azure OpenAI API主要有两种方式:
- 直接设置默认客户端:这是最简单直接的方法,通过设置默认的异步Azure OpenAI客户端来实现。
from openai import AsyncAzureOpenAI
from agents import set_default_openai_client, set_tracing_disabled
# 初始化Azure OpenAI客户端
azure_client = AsyncAzureOpenAI(
api_key="你的API密钥",
api_version="2024-06-01", # 使用最新API版本
azure_endpoint="你的Azure终结点URL",
azure_deployment="你的部署名称"
)
# 设置为默认客户端
set_default_openai_client(azure_client)
# 禁用追踪功能,因为Azure不支持
set_tracing_disabled(True)
- 通过模型参数指定:在创建Agent时直接指定自定义的OpenAI客户端。
from openai import AsyncAzureOpenAI
from agents import Agent, OpenAIChatCompletionsModel
azure_client = AsyncAzureOpenAI(...)
agent = Agent(
name="中文代理",
instructions="你只能说中文。",
model=OpenAIChatCompletionsModel(
model="你的部署名称",
openai_client=azure_client,
),
model_settings=ModelSettings(temperature=0.5),
)
实际应用示例
下面是一个完整的示例,展示如何创建一个使用Azure OpenAI服务的Agent并执行简单任务:
from openai import AsyncAzureOpenAI
from agents import Agent, OpenAIChatCompletionsModel, ModelSettings, Runner
# 初始化Azure客户端
azure_client = AsyncAzureOpenAI(
api_key="你的API密钥",
api_version="2024-06-01",
azure_endpoint="https://your-resource.openai.azure.com",
azure_deployment="gpt-4-deployment"
)
# 创建中文代理
agent = Agent(
name="中文诗人",
instructions="你是一位精通中国古典诗歌的AI助手。",
model=OpenAIChatCompletionsModel(
model="gpt-4-deployment",
openai_client=azure_client,
),
model_settings=ModelSettings(temperature=0.7),
)
# 运行代理
result = Runner.run_sync(agent, "请写一首关于春天的七言绝句。")
print(result)
常见问题与解决方案
- API密钥错误:当使用自定义客户端时,仍需设置OPENAI_API_KEY环境变量,即使值为空。
# 在终端中执行
export OPENAI_API_KEY=""
- 追踪功能冲突:Azure OpenAI服务不支持追踪功能,必须显式禁用:
set_tracing_disabled(True)
- 模型名称不匹配:在Azure中部署的模型可能有自定义名称,确保在代码中使用的是部署名称而非原始模型名称。
扩展应用:支持其他云服务商
同样的方法也适用于其他兼容OpenAI API的云服务提供商,如阿里云的Qwen模型:
from openai import AsyncOpenAI
external_client = AsyncOpenAI(
api_key="你的API密钥",
base_url="服务商提供的兼容模式终结点",
)
agent = Agent(
name="多模型代理",
instructions="你是一个多模型支持助手。",
model=OpenAIChatCompletionsModel(
model="服务商指定的模型名称",
openai_client=external_client,
),
)
性能优化建议
-
连接池管理:对于高并发场景,考虑自定义HTTP客户端以优化连接池设置。
-
超时配置:根据网络状况调整超时参数,避免长时间等待。
-
重试策略:配置适当的重试策略以应对临时性故障。
结语
通过openai-agents-python框架,开发者可以灵活地将Azure OpenAI或其他兼容OpenAI API的服务集成到自己的应用中。本文介绍的方法不仅适用于Azure,也可扩展到其他云服务提供商。掌握这些技巧后,开发者可以根据实际需求选择最适合的LLM服务,构建更加强大和灵活的AI应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C073
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 单总线CPU设计实训代码:计算机组成原理最佳学习资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
460
3.43 K
暂无简介
Dart
713
170
Ascend Extension for PyTorch
Python
267
304
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
186
71
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
842
417
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
446
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119