【亲测免费】 DenseDepth 实施教程
2026-01-17 08:37:38作者:丁柯新Fawn
1. 项目介绍
DenseDepth 是一个基于PyTorch的简单实现,用于论文《High Quality Monocular Depth Estimation via Transfer Learning》的方法。该项目旨在通过迁移学习来估计单目图像的高质量深度图。论文可以在这里查看,官方实现则在其他地方。
该项目的特点包括:
- 自动下载NYU Depth V2数据集。
- 提供训练脚本和预训练模型。
- 包含测试脚本,可展示深度估计结果。
2. 项目快速启动
要开始使用DenseDepth,首先确保已安装Python环境并配置了PyTorch。接下来,按照以下步骤操作:
安装依赖
pip install -r requirements.txt
下载数据集
python densedepth/download_data.py
运行预训练模型
python test.py --model_path PATH_TO_PRETRAINED_MODEL.h5 --input_dir PATH_TO_IMAGES_DIR --output_dir OUTPUT_PATH
在这里,替换PATH_TO_PRETRAINED_MODEL.h5为预训练模型的路径,PATH_TO_IMAGES_DIR为测试图片目录,并指定OUTPUT_PATH保存结果的位置。
使用演示脚本
python demo.py
这将运行一个Qt界面,从网络摄像头或指定图像中显示3D点云。
3. 应用案例和最佳实践
- 深度预测: 可以使用预训练模型对新的室内或室外场景进行深度估计,为机器人导航、增强现实等应用提供信息。
- 优化训练: 虽然项目提供了7个周期的训练结果,但为了获得更好的性能,可以进一步增加训练次数或调整超参数。
- 自定义数据集: 将模型应用于特定领域时,可以利用自己的深度图像数据集对模型进行微调。
4. 典型生态项目
DenseDepth是深度学习领域的其中一项工作,它可以与其他相关项目集成:
- OpenCV: 用于图像处理和计算机视觉任务。
- Mapillary Vistas: 提供大量多视角街景图像,可用于扩展训练数据。
- SfM (Structure from Motion): 用于重建3D场景,与深度估计相结合可以增强结果。
请注意,这个项目可能还需要GPU支持,特别是对于训练过程。推荐使用具备足够显存(如NVIDIA TITAN RTX)的系统来运行。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882