提升基于查询的对象检测:Selective Query Recollection 技术详解
项目介绍
Enhanced Training of Query-Based Object Detection via Selective Query Recollection 是一个由卡内基梅隆大学和Meta AI联合开发的开源项目,旨在通过一种名为“Selective Query Recollection”(SQR)的训练策略,显著提升基于查询的对象检测模型的性能。该项目已在CVPR 2023上发表,并获得了广泛关注。
项目技术分析
动机
在基于查询的对象检测器(如DETR系列)的训练过程中,研究人员发现了一个有趣的现象:模型在解码的最后阶段可能会出现误判,而在中间阶段却能正确预测。这种现象揭示了两个主要问题:
- 阶段责任不平衡:每个阶段的监督力度相似,但责任分配不均。
- 查询的级联效应:中间阶段的查询无论好坏,都会传递到后续阶段,导致误差累积。
解决方案:Selective Query Recollection
SQR 是一种适用于大多数基于查询的对象检测器的训练策略。它通过在训练过程中累积中间阶段的查询,并将这些查询重新输入到下游阶段,从而打破了传统的顺序结构。这种策略不仅平衡了各阶段的责任,还减少了误差的级联效应,显著提升了模型的性能。
项目及技术应用场景
SQR 技术适用于各种基于查询的对象检测器,特别是 DETR 系列模型。其应用场景广泛,包括但不限于:
- 自动驾驶:在自动驾驶系统中,准确的对象检测是确保安全的关键。
- 智能监控:在安防监控系统中,SQR 可以提高目标识别的准确性。
- 医学影像分析:在医学影像中,SQR 可以帮助更准确地识别病变区域。
项目特点
1. 高效性
SQR 技术在训练过程中显著提高了模型的效率,减少了训练时间和资源消耗。
2. 灵活性
SQR 可以轻松集成到现有的基于查询的对象检测器中,无需对模型结构进行大幅修改。
3. 高性能
实验结果表明,SQR 技术在多个基准测试中均取得了优异的成绩,特别是在 COCO 数据集上的表现尤为突出。
4. 开源支持
项目代码已在 GitHub 上开源,用户可以轻松获取并进行二次开发。
结语
Enhanced Training of Query-Based Object Detection via Selective Query Recollection 项目通过创新的 SQR 技术,为基于查询的对象检测器带来了显著的性能提升。无论是在学术研究还是实际应用中,SQR 都展现出了巨大的潜力。我们鼓励广大开发者和研究人员尝试并应用这一技术,共同推动对象检测领域的发展。
项目地址:GitHub
论文地址:arXiv
通过以上介绍,相信您已经对 SQR 技术有了全面的了解。如果您正在寻找一种能够提升对象检测性能的解决方案,不妨尝试一下这个开源项目,相信它会给您带来意想不到的惊喜!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00