Chef ruby_rbenv Cookbook 技术文档
1. 安装指南
1.1 系统要求
-
Chef版本: 该Cookbook要求Chef 13.0及以上版本。需要注意的是,某些Chef版本(>= 16且< 16.4.41)在git资源中存在一个bug,可能会导致一些失败。如果遇到问题,请尝试使用更高版本的Chef 16。
-
支持的平台:
- Debian及其衍生版本
- Fedora
- macOS(目前未经过测试)
- RHEL及其衍生版本(如RHEL、CentOS、Amazon Linux、Oracle Linux、Scientific Linux)
- openSUSE及openSUSE Leap
1.2 安装步骤
-
安装Cookbook: 你可以通过Chef Supermarket安装该Cookbook。使用以下命令:
chef gem install ruby_rbenv或者在你的Chef环境中添加依赖:
depends 'ruby_rbenv' -
配置rbenv: 在安装完成后,你需要配置
rbenv_system_install或rbenv_user_install资源,以便rbenv知道你想要使用的Ruby版本,并将其安装在系统中。
2. 项目的使用说明
2.1 系统级安装与用户级安装
-
系统级安装: 该Cookbook支持系统级的rbenv安装,但rbenv的维护者不推荐这种方式。你可以通过
rbenv_system_install资源进行系统级安装。 -
用户级安装: 推荐使用
rbenv_user_install资源进行用户级安装。这种方式更为灵活,且符合rbenv的设计初衷。
2.2 macOS系统安装注意事项
macOS系统默认不支持/etc/profile.d目录中的配置文件片段管理。因此,你可能需要手动修改用户配置文件,以确保rbenv的正确使用。
3. 项目API使用文档
3.1 主要资源
- rbenv_gem: 用于管理通过rbenv安装的Ruby版本的gem包。
- rbenv_global: 用于设置全局的Ruby版本。
- rbenv_plugin: 用于管理rbenv插件。
- rbenv_rehash: 用于重新生成rbenv的shim文件。
- rbenv_ruby: 用于安装特定版本的Ruby。
- rbenv_script: 用于在rbenv环境中执行脚本。
- rbenv_system_install: 用于系统级的rbenv安装。
- rbenv_user_install: 用于用户级的rbenv安装。
3.2 示例
以下是一个简单的示例,展示如何使用rbenv_user_install和rbenv_ruby资源:
rbenv_user_install 'myuser'
rbenv_ruby '2.7.2' do
user 'myuser'
end
rbenv_global '2.7.2' do
user 'myuser'
end
4. 项目安装方式
4.1 通过Chef Supermarket安装
你可以通过Chef Supermarket直接安装该Cookbook,命令如下:
chef gem install ruby_rbenv
4.2 在Chef环境中添加依赖
在你的Chef环境中,可以通过在metadata.rb文件中添加依赖来使用该Cookbook:
depends 'ruby_rbenv'
4.3 手动安装
你也可以从GitHub仓库中克隆该Cookbook,并将其手动添加到你的Chef环境中:
git clone https://github.com/sous-chefs/ruby_rbenv.git
结语
本文档详细介绍了Chef ruby_rbenv Cookbook的安装、使用及API文档。通过本文档,用户可以快速上手并深入了解该项目的使用方法。如果你有任何问题或建议,欢迎通过GitHub Issues进行反馈。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00