Chef ruby_rbenv Cookbook 技术文档
1. 安装指南
1.1 系统要求
-
Chef版本: 该Cookbook要求Chef 13.0及以上版本。需要注意的是,某些Chef版本(>= 16且< 16.4.41)在git资源中存在一个bug,可能会导致一些失败。如果遇到问题,请尝试使用更高版本的Chef 16。
-
支持的平台:
- Debian及其衍生版本
- Fedora
- macOS(目前未经过测试)
- RHEL及其衍生版本(如RHEL、CentOS、Amazon Linux、Oracle Linux、Scientific Linux)
- openSUSE及openSUSE Leap
1.2 安装步骤
-
安装Cookbook: 你可以通过Chef Supermarket安装该Cookbook。使用以下命令:
chef gem install ruby_rbenv
或者在你的Chef环境中添加依赖:
depends 'ruby_rbenv'
-
配置rbenv: 在安装完成后,你需要配置
rbenv_system_install
或rbenv_user_install
资源,以便rbenv知道你想要使用的Ruby版本,并将其安装在系统中。
2. 项目的使用说明
2.1 系统级安装与用户级安装
-
系统级安装: 该Cookbook支持系统级的rbenv安装,但rbenv的维护者不推荐这种方式。你可以通过
rbenv_system_install
资源进行系统级安装。 -
用户级安装: 推荐使用
rbenv_user_install
资源进行用户级安装。这种方式更为灵活,且符合rbenv的设计初衷。
2.2 macOS系统安装注意事项
macOS系统默认不支持/etc/profile.d
目录中的配置文件片段管理。因此,你可能需要手动修改用户配置文件,以确保rbenv的正确使用。
3. 项目API使用文档
3.1 主要资源
- rbenv_gem: 用于管理通过rbenv安装的Ruby版本的gem包。
- rbenv_global: 用于设置全局的Ruby版本。
- rbenv_plugin: 用于管理rbenv插件。
- rbenv_rehash: 用于重新生成rbenv的shim文件。
- rbenv_ruby: 用于安装特定版本的Ruby。
- rbenv_script: 用于在rbenv环境中执行脚本。
- rbenv_system_install: 用于系统级的rbenv安装。
- rbenv_user_install: 用于用户级的rbenv安装。
3.2 示例
以下是一个简单的示例,展示如何使用rbenv_user_install
和rbenv_ruby
资源:
rbenv_user_install 'myuser'
rbenv_ruby '2.7.2' do
user 'myuser'
end
rbenv_global '2.7.2' do
user 'myuser'
end
4. 项目安装方式
4.1 通过Chef Supermarket安装
你可以通过Chef Supermarket直接安装该Cookbook,命令如下:
chef gem install ruby_rbenv
4.2 在Chef环境中添加依赖
在你的Chef环境中,可以通过在metadata.rb
文件中添加依赖来使用该Cookbook:
depends 'ruby_rbenv'
4.3 手动安装
你也可以从GitHub仓库中克隆该Cookbook,并将其手动添加到你的Chef环境中:
git clone https://github.com/sous-chefs/ruby_rbenv.git
结语
本文档详细介绍了Chef ruby_rbenv Cookbook的安装、使用及API文档。通过本文档,用户可以快速上手并深入了解该项目的使用方法。如果你有任何问题或建议,欢迎通过GitHub Issues进行反馈。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









