FlagEmbedding项目中文LLM嵌入模型微调实践
2025-05-24 15:21:02作者:裘晴惠Vivianne
背景介绍
FlagEmbedding项目中的LLM-Embedder是一个强大的嵌入模型框架,但其官方版本BAAI/llm-embedder默认不支持中文。本文将详细介绍如何通过微调方法,使该框架能够有效处理中文文本。
中文支持方案
要让LLM-Embedder支持中文,核心思路是使用一个已经支持中文的基础模型作为起点,然后通过特定数据集进行微调。具体实现步骤如下:
-
选择中文基础模型:推荐使用BAAI/bge-large-zh-v1.5作为query_encoder,这是一个已经预训练好的中文嵌入模型。
-
准备训练数据:训练数据应采用JSONL格式,每条记录包含查询文本、正例和负例样本,并标注任务类型。例如:
{"query":"今天星期几","pos":[xxxx],"neg":[xxxx],"task":"icl"}
- 配置中文指令:需要为中文版本配置特定的指令模板,例如:
"zh_llm_embedder": {
"instruction": {
"icl": {
"query": "为这个句子生成表示以用于检索相关文章: ",
"key": ""
}
}
}
微调实施步骤
执行微调的命令如下:
CUDA_VISIBLE_DEVICES="0,2" nohup torchrun --nproc_per_node=2 run_dense.py \
--output_dir data/outputs/icl \
--train_data llm-embedder:train.jsonl \
--save_steps 6000 \
--query_encoder BAAI/bge-large-zh-v1.5 \
--version zh_llm_embedder \
--inbatch_same_dataset epoch \
--learning_rate 2e-5 \
--num_train_epochs 2 \
--train_group_size 15 \
--per_device_train_batch_size 16 \
--cos_temperature 0.02 \
--dtype fp32 \
--report_to tensorboard \
--data_root data >log.log 2>&1 &
关键参数说明:
query_encoder:指定中文基础模型version:使用配置的中文版本标识train_group_size:控制训练时正负样本比例cos_temperature:调节相似度计算的温度参数
模型转换与使用
微调完成后,模型会保存在指定目录中,包含以下文件结构:
├── args.json
├── encoder
│ ├── config.json
│ ├── model.safetensors
│ ├── special_tokens_map.json
│ ├── tokenizer_config.json
│ ├── tokenizer.json
│ └── vocab.txt
...
为了使用sentence_transformers库加载模型,需要进行格式转换。转换过程中可能会出现关于pooler层未初始化的警告,这是正常现象,可以安全忽略,因为实际使用中不会用到这些层。
技术要点
-
跨语言迁移:通过使用中文预训练模型作为基础,可以有效实现知识迁移,使模型具备中文处理能力。
-
微调策略:采用in-batch负采样技术,通过
train_group_size参数控制样本组合,提高模型区分相关和不相关文本的能力。 -
温度参数:
cos_temperature参数影响相似度得分的分布,适当调整可以提高模型区分度。
应用建议
-
对于不同的中文任务场景,可以调整指令模板以获得更好的效果。
-
微调后的模型可以广泛应用于中文信息检索、问答系统等场景。
-
建议在实际应用前,使用领域相关数据对模型进行进一步微调,以获得最佳性能。
通过这种方法,开发者可以有效地将LLM-Embedder框架应用于中文场景,为中文自然语言处理任务提供高质量的文本嵌入能力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C027
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
423
3.25 K
Ascend Extension for PyTorch
Python
231
262
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
331
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869