FlagEmbedding项目中文LLM嵌入模型微调实践
2025-05-24 03:16:17作者:裘晴惠Vivianne
背景介绍
FlagEmbedding项目中的LLM-Embedder是一个强大的嵌入模型框架,但其官方版本BAAI/llm-embedder默认不支持中文。本文将详细介绍如何通过微调方法,使该框架能够有效处理中文文本。
中文支持方案
要让LLM-Embedder支持中文,核心思路是使用一个已经支持中文的基础模型作为起点,然后通过特定数据集进行微调。具体实现步骤如下:
-
选择中文基础模型:推荐使用BAAI/bge-large-zh-v1.5作为query_encoder,这是一个已经预训练好的中文嵌入模型。
-
准备训练数据:训练数据应采用JSONL格式,每条记录包含查询文本、正例和负例样本,并标注任务类型。例如:
{"query":"今天星期几","pos":[xxxx],"neg":[xxxx],"task":"icl"}
- 配置中文指令:需要为中文版本配置特定的指令模板,例如:
"zh_llm_embedder": {
"instruction": {
"icl": {
"query": "为这个句子生成表示以用于检索相关文章: ",
"key": ""
}
}
}
微调实施步骤
执行微调的命令如下:
CUDA_VISIBLE_DEVICES="0,2" nohup torchrun --nproc_per_node=2 run_dense.py \
--output_dir data/outputs/icl \
--train_data llm-embedder:train.jsonl \
--save_steps 6000 \
--query_encoder BAAI/bge-large-zh-v1.5 \
--version zh_llm_embedder \
--inbatch_same_dataset epoch \
--learning_rate 2e-5 \
--num_train_epochs 2 \
--train_group_size 15 \
--per_device_train_batch_size 16 \
--cos_temperature 0.02 \
--dtype fp32 \
--report_to tensorboard \
--data_root data >log.log 2>&1 &
关键参数说明:
query_encoder:指定中文基础模型version:使用配置的中文版本标识train_group_size:控制训练时正负样本比例cos_temperature:调节相似度计算的温度参数
模型转换与使用
微调完成后,模型会保存在指定目录中,包含以下文件结构:
├── args.json
├── encoder
│ ├── config.json
│ ├── model.safetensors
│ ├── special_tokens_map.json
│ ├── tokenizer_config.json
│ ├── tokenizer.json
│ └── vocab.txt
...
为了使用sentence_transformers库加载模型,需要进行格式转换。转换过程中可能会出现关于pooler层未初始化的警告,这是正常现象,可以安全忽略,因为实际使用中不会用到这些层。
技术要点
-
跨语言迁移:通过使用中文预训练模型作为基础,可以有效实现知识迁移,使模型具备中文处理能力。
-
微调策略:采用in-batch负采样技术,通过
train_group_size参数控制样本组合,提高模型区分相关和不相关文本的能力。 -
温度参数:
cos_temperature参数影响相似度得分的分布,适当调整可以提高模型区分度。
应用建议
-
对于不同的中文任务场景,可以调整指令模板以获得更好的效果。
-
微调后的模型可以广泛应用于中文信息检索、问答系统等场景。
-
建议在实际应用前,使用领域相关数据对模型进行进一步微调,以获得最佳性能。
通过这种方法,开发者可以有效地将LLM-Embedder框架应用于中文场景,为中文自然语言处理任务提供高质量的文本嵌入能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178