TensorRT中禁用操作融合的技术方案解析
在深度学习模型优化领域,TensorRT作为NVIDIA推出的高性能推理引擎,其操作融合(Operation Fusion)技术是提升推理效率的重要手段。然而在某些特定场景下,开发者可能需要禁用这一优化功能,例如在进行TensorRT与PyTorch推理性能对比时,确保两者在相同计算粒度下进行比较。
操作融合的基本原理
TensorRT的操作融合技术通过将多个连续的操作合并为一个复合操作来减少内核启动开销和内存访问延迟。这种优化特别适用于BERT-large等复杂模型,能够显著减少计算图节点数量,提高在RTX3090等高性能GPU上的执行效率。
禁用操作融合的技术方案
通过Polygraphy工具可以有效地控制TensorRT的优化行为,生成未进行操作融合的引擎文件。具体实现方式如下:
- 使用Polygraphy命令行工具:
polygraphy run model.onnx --trt --trt-outputs mark all --save-engine unfused.plan
- 通过Python API编程实现:
from polygraphy.backend.trt import CreateConfig, EngineFromNetwork, NetworkFromOnnxPath
from polygraphy.backend.trt import SaveEngine
# 构建不进行融合优化的TensorRT引擎
build_engine = EngineFromNetwork(
NetworkFromOnnxPath("model.onnx"),
config=CreateConfig()
)
SaveEngine(build_engine, path="unfused.plan")
技术实现细节
-
输出标记策略:
--trt-outputs mark all参数确保保留所有中间层的输出,这实际上阻止了TensorRT对这些层进行融合优化。 -
性能影响评估:禁用操作融合后,引擎的执行效率通常会有所下降,内存占用也会增加,这是进行性能对比时需要特别注意的。
-
与TensorRT-LLM的集成:生成的未融合引擎可以无缝集成到TensorRT-LLM框架中,为大型语言模型的优化研究提供更灵活的对比基准。
应用场景分析
-
框架间性能对比:当需要比较TensorRT与PyTorch原始模型的推理性能时,禁用融合可以确保比较的公平性。
-
调试与验证:在模型精度出现偏差时,禁用融合有助于定位问题发生的具体操作层。
-
教学与研究:帮助开发者更直观地理解TensorRT的优化机制及其对模型性能的影响。
注意事项
-
在RTX3090等安培架构GPU上,操作融合带来的性能提升可能更为显著,禁用前应充分评估需求。
-
TensorRT 10.2版本对BERT类模型的融合优化已相当成熟,除非必要,不建议在生产环境中禁用。
-
禁用融合后,建议使用Nsight Systems等工具进行详细的性能剖析,以全面了解各层的执行情况。
通过掌握这些技术方案,开发者可以更灵活地运用TensorRT进行模型优化和性能分析,在保证推理效率的同时,也能满足特定的研究和开发需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01