【亲测免费】 CircuitNet 开源项目使用教程
1. 项目介绍
CircuitNet 是一个开源的数据集,专为电子设计自动化(EDA)中的机器学习应用而设计。该项目旨在为研究人员和开发者提供一个高质量的数据集,以支持在VLSI CAD应用中的机器学习研究。CircuitNet 数据集包含了多种电子设计相关的特征,如网络延迟、拥塞预测、IR下降预测等,适用于多种机器学习任务。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.9 和 PyTorch 1.11。你可以通过以下命令安装 PyTorch:
pip install torch
此外,如果你需要进行网络延迟预测,还需要安装 DGL(Deep Graph Library):
pip install dgl
2.2 安装依赖
克隆项目并安装所需的依赖:
git clone https://github.com/circuitnet/CircuitNet.git
cd CircuitNet
pip install -r requirements.txt
2.3 数据准备
根据项目文档中的说明,下载并设置 CircuitNet 数据集。你可以通过以下命令下载数据集:
python download_data.py
2.4 运行示例
以下是一个简单的示例,展示如何使用 CircuitNet 进行拥塞预测:
import os
from circuitnet import CongestionPredictor
# 初始化预测器
predictor = CongestionPredictor(pretrained_weights='path/to/pretrained_weights')
# 加载数据
data_path = 'path/to/data'
predictor.load_data(data_path)
# 进行预测
predictions = predictor.predict()
# 输出结果
print(predictions)
3. 应用案例和最佳实践
3.1 拥塞预测
拥塞预测是 CircuitNet 的一个重要应用场景。通过使用预训练的模型,开发者可以快速预测电路设计中的拥塞情况,从而优化设计流程。
3.2 IR下降预测
IR下降预测是另一个重要的应用场景。通过分析电路中的IR下降情况,开发者可以优化电源网络设计,提高电路的性能和可靠性。
3.3 网络延迟预测
网络延迟预测可以帮助开发者优化电路的时序设计。通过使用 DGL 和 PyTorch,开发者可以构建复杂的图神经网络模型,进行精确的网络延迟预测。
4. 典型生态项目
4.1 PyTorch
PyTorch 是 CircuitNet 项目中使用的主要深度学习框架。通过 PyTorch,开发者可以构建和训练复杂的机器学习模型。
4.2 DGL
DGL(Deep Graph Library)是一个专门用于处理图数据的库。在 CircuitNet 中,DGL 被用于构建和训练图神经网络模型,进行网络延迟预测。
4.3 TensorFlow
虽然 CircuitNet 主要使用 PyTorch,但 TensorFlow 也是一个强大的深度学习框架,可以用于类似的任务。开发者可以根据自己的需求选择合适的框架。
通过以上步骤,你可以快速上手并使用 CircuitNet 进行电子设计自动化中的机器学习应用。希望这个教程对你有所帮助!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00