MediaPipe在M1 Mac上构建facemesh示例的链接错误解决方案
问题背景
在使用MediaPipe项目构建facemesh示例时,M1芯片的Mac用户可能会遇到一个特定的链接错误。这个错误表现为系统尝试链接x86_64架构的动态库,而实际上需要链接的是arm64架构的库文件。
错误现象
当用户执行构建命令时,会出现以下关键错误信息:
ld: warning: ignoring file '/opt/homebrew/Cellar/opencv@3/3.4.20/lib/libopencv_core.3.4.20.dylib': found architecture 'arm64', required architecture 'x86_64'
这表明链接器找到了arm64架构的OpenCV库,但构建系统却要求x86_64架构的库文件。随后会出现大量未定义符号的错误,主要是OpenCV相关的函数。
原因分析
这个问题的根源在于构建系统没有正确识别M1芯片的架构需求。虽然用户已经通过--macos_cpus=arm64
参数指定了arm64架构,但某些配置可能仍然默认指向x86_64架构的库路径。
解决方案
1. 检查WORKSPACE配置
MediaPipe项目通过WORKSPACE文件中的macos_opencv
和macos_ffmpeg
配置来定位本地库文件。对于M1 Mac用户,需要确保这些路径指向正确的Homebrew安装位置:
new_local_repository(
name = "macos_opencv",
build_file = "@//third_party:opencv_macos.BUILD",
path = "/opt/homebrew", # M1芯片的Homebrew默认安装路径
)
new_local_repository(
name = "macos_ffmpeg",
build_file = "@//third_party:ffmpeg_macos.BUILD",
path = "/opt/homebrew/opt/ffmpeg",
)
2. 简化构建命令
对于M1/M2芯片的Mac,可以尝试更简单的构建命令:
bazel build --define MEDIAPIPE_DISABLE_GPU=1 -c opt mediapipe/examples/desktop/face_mesh:face_mesh_cpu
现代版本的Bazel通常能自动检测并适配M1/M2芯片的架构。
3. 验证OpenCV安装
确保通过Homebrew正确安装了OpenCV 3.x版本:
brew install opencv@3
并确认安装路径在/opt/homebrew/opt/opencv@3
(M1芯片)而非/usr/local/opt/opencv@3
(Intel芯片)。
技术细节
M1/M2芯片的Mac使用arm64架构,而传统的Intel Mac使用x86_64架构。Homebrew在M1芯片上的默认安装路径是/opt/homebrew
,这与Intel芯片的/usr/local
不同。MediaPipe的构建系统需要正确识别这些差异才能成功链接正确的库文件。
总结
在M1/M2芯片的Mac上构建MediaPipe项目时,关键是要确保构建系统能够找到正确架构的依赖库。通过调整WORKSPACE配置和验证依赖安装路径,大多数链接问题都可以得到解决。随着工具链的不断完善,这类架构兼容性问题将会越来越少。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0108AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









