MediaPipe在M1 Mac上构建facemesh示例的链接错误解决方案
问题背景
在使用MediaPipe项目构建facemesh示例时,M1芯片的Mac用户可能会遇到一个特定的链接错误。这个错误表现为系统尝试链接x86_64架构的动态库,而实际上需要链接的是arm64架构的库文件。
错误现象
当用户执行构建命令时,会出现以下关键错误信息:
ld: warning: ignoring file '/opt/homebrew/Cellar/opencv@3/3.4.20/lib/libopencv_core.3.4.20.dylib': found architecture 'arm64', required architecture 'x86_64'
这表明链接器找到了arm64架构的OpenCV库,但构建系统却要求x86_64架构的库文件。随后会出现大量未定义符号的错误,主要是OpenCV相关的函数。
原因分析
这个问题的根源在于构建系统没有正确识别M1芯片的架构需求。虽然用户已经通过--macos_cpus=arm64参数指定了arm64架构,但某些配置可能仍然默认指向x86_64架构的库路径。
解决方案
1. 检查WORKSPACE配置
MediaPipe项目通过WORKSPACE文件中的macos_opencv和macos_ffmpeg配置来定位本地库文件。对于M1 Mac用户,需要确保这些路径指向正确的Homebrew安装位置:
new_local_repository(
name = "macos_opencv",
build_file = "@//third_party:opencv_macos.BUILD",
path = "/opt/homebrew", # M1芯片的Homebrew默认安装路径
)
new_local_repository(
name = "macos_ffmpeg",
build_file = "@//third_party:ffmpeg_macos.BUILD",
path = "/opt/homebrew/opt/ffmpeg",
)
2. 简化构建命令
对于M1/M2芯片的Mac,可以尝试更简单的构建命令:
bazel build --define MEDIAPIPE_DISABLE_GPU=1 -c opt mediapipe/examples/desktop/face_mesh:face_mesh_cpu
现代版本的Bazel通常能自动检测并适配M1/M2芯片的架构。
3. 验证OpenCV安装
确保通过Homebrew正确安装了OpenCV 3.x版本:
brew install opencv@3
并确认安装路径在/opt/homebrew/opt/opencv@3(M1芯片)而非/usr/local/opt/opencv@3(Intel芯片)。
技术细节
M1/M2芯片的Mac使用arm64架构,而传统的Intel Mac使用x86_64架构。Homebrew在M1芯片上的默认安装路径是/opt/homebrew,这与Intel芯片的/usr/local不同。MediaPipe的构建系统需要正确识别这些差异才能成功链接正确的库文件。
总结
在M1/M2芯片的Mac上构建MediaPipe项目时,关键是要确保构建系统能够找到正确架构的依赖库。通过调整WORKSPACE配置和验证依赖安装路径,大多数链接问题都可以得到解决。随着工具链的不断完善,这类架构兼容性问题将会越来越少。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00