Preact Signals 与 React Fast Refresh 的兼容性问题解析
在 React 开发中,Fast Refresh(快速刷新)是一个提高开发体验的重要功能,它能够在代码修改后快速更新UI而不丢失组件状态。然而,当与 Preact Signals 结合使用时,开发者可能会遇到一些意外的行为。
问题现象
当使用 @preact/signals-react-transform 插件时,React Fast Refresh 的两种更新模式会出现异常:
- 组件树更新模式:正常情况下,Fast Refresh 会尝试保留当前组件树和状态
- 完全重新渲染模式:当检测到重大变更(如添加/删除钩子)时,会完全重新渲染组件
问题表现为:无论修改内容如何,Fast Refresh 总是尝试使用组件树更新模式,导致在修改钩子相关代码时出现 React 错误提示,如"Rendered fewer hooks than expected"等。
根本原因分析
经过深入分析,发现问题的根源在于 Babel 插件执行顺序和转换方式:
- React Refresh 插件首先运行,记录组件函数中的钩子使用情况
- Preact Signals 转换插件随后运行,完全替换了原函数
- React Refresh 插件再次运行时,其记录的钩子信息与转换后的函数不匹配
这种执行顺序导致 Fast Refresh 无法正确识别组件函数的变化,特别是当钩子数量或顺序发生变化时。
解决方案
通过修改 Preact Signals 转换插件的实现方式,可以解决这一问题:
- 不替换整个函数:改为仅替换函数体部分,保留原函数结构
- 保持函数签名:确保 React Refresh 插件能正确识别组件的变化
具体实现上,将原来的path.replaceWith(newFunction)改为path.node.body = newFunction.body,这样既完成了信号转换,又保留了 React Refresh 所需的信息。
技术细节
Preact Signals 的转换插件原本会在开发模式下使用try-finally块来管理信号状态,这种结构影响了 React Refresh 对组件函数的分析。通过调整转换策略,可以:
- 保持 Fast Refresh 的正常工作
- 不牺牲 Signals 的功能完整性
- 避免出现状态管理相关的循环错误
结论
这一问题的解决展示了 Babel 插件间协作的重要性。通过更精细的函数转换策略,Preact Signals 能够与 React 生态系统的其他工具(如 Fast Refresh)更好地协同工作,为开发者提供更流畅的开发体验。
对于开发者来说,理解这类工具链问题的本质有助于在遇到类似情况时更快定位和解决问题。同时,这也提醒我们在开发转换工具时需要考虑到与其他流行工具的兼容性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00