首页
/ 分布式机器学习平台:Biscotti 安装与使用指南

分布式机器学习平台:Biscotti 安装与使用指南

2024-09-25 13:52:58作者:韦蓉瑛

项目介绍

Biscotti 是一个面向隐私和安全的去中心化对等机器学习系统,它允许参与者通过贡献(可能是私有的)数据集并协作训练全局模型来参与学习过程。该项目利用区块链技术作为节点间协调的基础,并采用差分隐私和加密方法确保数据的隐私与安全。Biscotti 的设计详细信息可在其 Arxiv 论文中找到。

技术栈与依赖

  • 开发语言:主要基于 Go,部分机器学习逻辑使用 Python。
  • 环境需求:Python 版本需为 2.7.12,以兼容 go-python 库。
  • 关键库:go-python用于Go和Python之间的交互。

项目快速启动

环境准备

  1. 安装Go环境: 确保Go语言环境已就绪,版本需符合要求。
  2. 设置Python环境: 确认Python版本为2.7.12。
  3. 获取源码: 使用Git克隆项目到本地。
    git clone https://github.com/DistributedML/Biscotti.git
    
  4. 依赖安装: 在azure/azure-setup目录下运行安装脚本。
    cd azure/azure-setup && ./azure-install.sh
    

运行Biscotti

局域网部署

DistSys目录下,通过以下命令启动本地测试,指定节点数和数据集。

cd DistSys && ./localTest.sh <numNodes> <dataset>

例如,启动10个节点并使用creditcard数据集:

./localTest.sh 10 creditcard

非局域网部署

需配置azure/azure-conf中的主机文件,设置SSH访问其他机器,并分别在每台机上安装依赖后,使用runBiscotti.sh脚本部署。

./runBiscotti.sh <nodesInEachVM> <totalNodes> <hostFileName> <dataset>

例如,部署100个节点至20台机器,使用mnist数据集:

./runBiscotti.sh 5 100 hostFile mnist

应用案例与最佳实践

由于Biscotti专注于隐私保护下的协同学习,它的最佳实践通常涉及多机构间的合作学习场景,如银行间的客户风险评估建模,或医疗健康领域不同机构共享数据但保持患者隐私不泄露的情况。实际应用中,团队应先明确隐私界限,选择合适的数据集分割策略,并遵循项目的指导原则进行模型训练。

典型生态项目

目前,Biscotti作为一个专注于隐私保护的机器学习框架,其生态项目案例较少公开报道。开发者社区可通过Forks和Star来发现潜在的合作或衍生项目,以及参与贡献,共同探索分布式机器学习的新边界。对于希望集成Biscotti功能或与其兼容的项目,推荐深入研究其源码和API文档,以实现特定应用场景的定制化解决方案。


以上内容构成了Biscotti的基本使用引导,进一步的开发实践和生态系统扩展,依赖于开发者社区的创新和贡献。始终关注项目更新与讨论,有助于最大化利用这一工具的潜力。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5