分布式机器学习平台:Biscotti 安装与使用指南
2024-09-25 22:57:42作者:韦蓉瑛
项目介绍
Biscotti 是一个面向隐私和安全的去中心化对等机器学习系统,它允许参与者通过贡献(可能是私有的)数据集并协作训练全局模型来参与学习过程。该项目利用区块链技术作为节点间协调的基础,并采用差分隐私和加密方法确保数据的隐私与安全。Biscotti 的设计详细信息可在其 Arxiv 论文中找到。
技术栈与依赖
- 开发语言:主要基于 Go,部分机器学习逻辑使用 Python。
- 环境需求:Python 版本需为 2.7.12,以兼容 go-python 库。
- 关键库:go-python用于Go和Python之间的交互。
项目快速启动
环境准备
- 安装Go环境: 确保Go语言环境已就绪,版本需符合要求。
- 设置Python环境: 确认Python版本为2.7.12。
- 获取源码: 使用Git克隆项目到本地。
git clone https://github.com/DistributedML/Biscotti.git - 依赖安装: 在
azure/azure-setup目录下运行安装脚本。cd azure/azure-setup && ./azure-install.sh
运行Biscotti
局域网部署
在DistSys目录下,通过以下命令启动本地测试,指定节点数和数据集。
cd DistSys && ./localTest.sh <numNodes> <dataset>
例如,启动10个节点并使用creditcard数据集:
./localTest.sh 10 creditcard
非局域网部署
需配置azure/azure-conf中的主机文件,设置SSH访问其他机器,并分别在每台机上安装依赖后,使用runBiscotti.sh脚本部署。
./runBiscotti.sh <nodesInEachVM> <totalNodes> <hostFileName> <dataset>
例如,部署100个节点至20台机器,使用mnist数据集:
./runBiscotti.sh 5 100 hostFile mnist
应用案例与最佳实践
由于Biscotti专注于隐私保护下的协同学习,它的最佳实践通常涉及多机构间的合作学习场景,如银行间的客户风险评估建模,或医疗健康领域不同机构共享数据但保持患者隐私不泄露的情况。实际应用中,团队应先明确隐私界限,选择合适的数据集分割策略,并遵循项目的指导原则进行模型训练。
典型生态项目
目前,Biscotti作为一个专注于隐私保护的机器学习框架,其生态项目案例较少公开报道。开发者社区可通过Forks和Star来发现潜在的合作或衍生项目,以及参与贡献,共同探索分布式机器学习的新边界。对于希望集成Biscotti功能或与其兼容的项目,推荐深入研究其源码和API文档,以实现特定应用场景的定制化解决方案。
以上内容构成了Biscotti的基本使用引导,进一步的开发实践和生态系统扩展,依赖于开发者社区的创新和贡献。始终关注项目更新与讨论,有助于最大化利用这一工具的潜力。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882