SageMaker Python SDK中模型可解释性监控的一次性任务调度问题分析
问题背景
在AWS SageMaker的模型监控功能中,用户可以通过ModelExplainabilityMonitor来设置模型可解释性监控任务。最新版本中引入了对一次性监控任务的支持,允许用户通过指定CronExpressionGenerator.now()来立即执行监控任务。
问题现象
当用户尝试使用ModelExplainabilityMonitor创建一次性监控任务时,即使正确设置了data_analysis_start_time和data_analysis_end_time参数,系统仍然会抛出ValueError异常,提示"Both data_analysis_start_time and data_analysis_end_time are required for one time monitoring schedule"。
技术分析
这个问题源于ModelExplainabilityMonitor类在实现_create_monitoring_schedule_from_job_definition方法时,没有正确传递data_analysis_start_time和data_analysis_end_time参数。具体表现为:
- 用户调用create_monitoring_schedule方法时,虽然可以设置data_analysis_start_time和data_analysis_end_time参数
- 但在内部调用_create_monitoring_schedule_from_job_definition时,这些参数没有被传递
- 导致后续的_check_monitoring_schedule_cron_validity检查失败
相比之下,ModelBiasMonitor类(模型偏差监控)的实现是正确的,能够成功创建一次性监控任务。
问题根源
这个问题是在添加一次性监控任务支持时引入的。虽然相关代码已经合并到主分支,但ModelExplainabilityMonitor的实现被遗漏了。具体来说:
- 核心功能在ModelMonitor基类中已经实现
- ModelBiasMonitor正确继承了这些功能
- 但ModelExplainabilityMonitor没有正确传递必要的参数
解决方案
该问题已在最新版本中修复,主要修改包括:
- 确保ModelExplainabilityMonitor的_create_monitoring_schedule_from_job_definition方法正确传递data_analysis_start_time和data_analysis_end_time参数
- 保持与ModelBiasMonitor实现的一致性
最佳实践
对于需要使用一次性模型可解释性监控任务的用户,建议:
- 确保使用最新版本的SageMaker Python SDK
- 创建监控任务时,同时指定:
- schedule_cron_expression=CronExpressionGenerator.now()
- data_analysis_start_time (如"-PT2H")
- data_analysis_end_time (如"-PT1H")
- 验证监控任务是否按预期执行
总结
模型监控是机器学习运维中的重要环节,SageMaker提供了强大的监控能力。这次修复确保了模型可解释性监控能够像其他监控类型一样支持一次性任务调度,为用户提供了更灵活的选择。开发团队持续改进SDK的功能完整性和一致性,为用户提供更好的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00