TSD-SR: 一站式目标得分蒸馏扩散实现真实世界图像超分辨率
2025-05-19 07:45:07作者:董斯意
1. 项目介绍
TSD-SR(Target Score Distillation for Real-World Image Super-Resolution)是一个基于PyTorch的开源项目,它提出了一种新的超分辨率方法,通过一步扩散和目标得分蒸馏来提高真实世界图像的恢复质量。该方法由浙江大学和Vivo Mobile Communication Co. Ltd等机构的研究人员共同开发,并被CVPR 2025接受。TSD-SR旨在解决传统超分辨率方法在真实世界图像处理中遇到的挑战,如噪声、模糊和不规则纹理等。
2. 项目快速启动
环境准备
首先,确保已经安装了conda和Python 3.9。然后,按照以下步骤准备环境:
git clone https://github.com/Microtreei/TSD-SR.git
cd TSD-SR
conda create -n tsdsr python=3.9
conda activate tsdsr
pip install -r requirements.txt
预训练模型下载
下载预训练的SD3模型和TSD-SR的loral权重及提示嵌入:
- 从HuggingFace下载SD3模型。
- 从GoogleDrive或OneDrive下载TSD-SR的loral权重和提示嵌入。
将下载的模型权重放入checkpoint/tsdsr
,提示嵌入放入dataset/default
。
测试数据准备
将测试图像放入imgs/test
目录。
测试命令执行
运行以下命令进行测试:
python test/test_tsdsr.py \
--pretrained_model_name_or_path /path/to/your/sd3 \
-i imgs/test \
-o outputs/test \
--lora_dir checkpoint/tsdsr \
--embedding_dir dataset/default
性能评估
使用以下命令进行性能评估:
python test/test_metrics.py \
--inp_imgs outputs/DrealSR \
--gt_imgs imgs/StableSR_testsets/DrealSRVal_crop128/test_HR \
--log logs/metrics
3. 应用案例和最佳实践
训练数据准备
- 下载训练数据集,如LSDIR、FLICKR2K、DIV2K、FFHQ,并存储在指定位置。
- 准备降质图像和提示文本,按照项目提供的路径和结构组织数据。
训练过程
- 修改
data/data.py
和data/process.py
中的数据集路径。 - 运行
data/process.py
生成训练数据。 - 下载教师模型和空提示嵌入,并放置在相应的目录下。
- 运行训练命令开始训练过程。
模型优化
- 使用教师模型的LoRA权重进行微调,提高模型对高质量数据的敏感度。
- 使用空提示嵌入计算cfg,优化训练过程。
4. 典型生态项目
- StableSR: 提供了一个精心策划的测试数据集,用于评估超分辨率方法的性能。
- SD3: 用于图像超分辨率任务的基础模型,提供了强大的文本到图像生成能力。
- DAPE: 生成基于标签的提示文本,用于训练过程。
- LLaVA: 生成自然语言描述的提示文本,用于训练过程。
以上就是TSD-SR项目的最佳实践指南,希望对您有所帮助。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
161
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
198
279

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
949
556

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
346
1.33 K