LanceDB Python v0.18.0 版本发布:向量数据库的重大升级
LanceDB 是一个高性能的向量数据库,专为大规模机器学习应用设计。它提供了高效的向量搜索能力,支持多种索引类型和查询方式,能够帮助开发者快速构建基于向量的搜索和推荐系统。本次发布的 Python v0.18.0 版本带来了多项重要更新和功能增强。
核心功能增强
向量搜索能力提升
新版本显著增强了向量搜索的能力,引入了多项关键改进:
-
IVF_FLAT 索引支持:现在可以在远程表上创建和使用 IVF_FLAT 索引,这种索引类型结合了倒排文件(IVF)和平面(FLAT)搜索的优点,能够在保证搜索质量的同时提高搜索效率。
-
距离阈值支持:新增了向量搜索的距离阈值功能,允许开发者设置距离范围来过滤搜索结果。这对于需要精确控制搜索结果相似度的应用场景特别有用。
-
混合搜索增强:混合搜索功能已扩展到 Node 和 Rust SDK,使得跨语言使用更加一致。混合搜索结合了关键词搜索和向量搜索的优势,能够提供更精准的搜索结果。
-
多向量类型支持:新版本引入了对多向量类型的支持,使得单个数据项可以包含多个向量表示,为更复杂的搜索场景提供了可能。
异步API改进
Python 异步API得到了显著增强:
-
新增
to_polars方法:AsyncQueryBase类现在支持将查询结果直接转换为 Polars DataFrame,简化了数据处理流程。 -
查询结果扁平化:
AsyncQuery新增了flatten方法,可以更方便地处理嵌套数据结构。 -
重新排序功能:现在可以对非混合查询结果进行重新排序(
rerank),提供了更灵活的搜索结果处理方式。
数据操作优化
-
子模式支持:现在可以在插入和更新操作中处理子模式(sub-schema),使得数据结构更加灵活。
-
预过滤默认启用:同步Python API现在默认使用预过滤而非后过滤,这通常会带来性能提升,特别是在过滤条件能够显著减少搜索空间的情况下。
-
数据集配置暴露:新增了访问数据集配置的能力,为高级用户提供了更多控制选项。
性能与兼容性
-
升级至Lance 0.22.0:底层引擎升级带来了性能改进和新功能支持。
-
Azure存储连接修复:修正了Azure同步连接示例中的问题。
-
VoyageAI嵌入API修复:解决了VoyageAI嵌入API的问题。
开发者体验
-
文档完善:新增了异步API示例,修正了全文本搜索文档错误,更新了索引相关文档。
-
贡献指南:新增了贡献指南,方便开发者参与项目。
-
构建系统改进:优化了构建流程,特别是针对Windows ARM平台的构建支持。
LanceDB Python v0.18.0 的这些改进使得向量数据库的使用更加灵活和强大,特别是在处理复杂搜索场景和大规模数据时表现更为出色。开发者现在可以更高效地构建基于向量的智能应用,同时享受到更好的性能和更丰富的功能支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00