AzurLaneAutoScript 强化功能异常分析与解决方案
问题背景
在 AzurLaneAutoScript(以下简称 ALAS)的船只强化功能中,当遇到战斗中的船只时,系统会出现重复点击导致的异常退出问题。这个问题主要影响外服玩家,特别是在网络略有卡顿的情况下更容易触发。
问题现象
当 ALAS 尝试强化船只时,如果前几艘需要强化的船只正处于战斗状态,系统会不断尝试点击强化按钮(ENHANCE_RECOMMEND 和 ENHANCE_CONFIRM)。当这两种按钮的点击次数都达到6次时,系统会触发"Too many click between 2 buttons"错误并退出。
技术分析
状态机流程
ALAS 的强化功能采用状态机模式实现,正常强化流程如下:
- state_enhance_check:检查当前船只状态
- state_enhance_ready:准备强化
- state_enhance_recommend:设置推荐强化材料
- state_enhance_attempt:尝试点击强化确认按钮
- state_enhance_confirm:确认强化结果
当遇到战斗中的船只时,流程会变为: state_enhance_recommend → state_enhance_attempt → state_enhance_confirm → state_enhance_fail
重复点击保护机制
ALAS 通过 device.py 中的逻辑防止过多重复点击,规则如下:
- 单一按钮点击超过12次
- 两个按钮各点击超过6次
当前问题触发了第二条规则。
现有保护逻辑的不足
系统原本设计了针对"无材料可强化"情况的保护:
if state_list[-2:] == ["state_enhance_recommend", "state_enhance_fail"]:
self.device.click_record_clear()
但这种保护仅适用于从 state_enhance_recommend 直接到 state_enhance_fail 的情况,无法覆盖因战斗状态导致的强化失败路径。
解决方案
修复方案需要扩展点击记录清除的条件,使其能够识别因战斗状态导致的强化失败。具体应修改为:
if (state_list[-2:] == ["state_enhance_recommend", "state_enhance_fail"] or
state_list[-4:] == ["state_enhance_recommend", "state_enhance_attempt",
"state_enhance_confirm", "state_enhance_fail"]):
self.device.click_record_clear()
这样修改后,系统能够在以下两种情况下清除点击记录:
- 无材料可强化(原逻辑)
- 因战斗状态无法强化(新增逻辑)
实施效果
该修复已合并到主分支并经过一周的测试验证,确认能够有效解决战斗状态下船只强化导致的异常退出问题。用户反馈强化功能现在能够正常跳过战斗中的船只,继续尝试强化其他可用船只,而不会因点击次数过多而意外退出。
总结
通过对 ALAS 强化功能状态机的深入分析和针对性修复,我们解决了因战斗状态船只导致的重复点击问题。这个案例展示了状态机设计中考虑所有可能路径的重要性,以及在实现点击保护机制时需要全面覆盖各种异常情况。对于自动化脚本开发来说,这类边界条件的处理往往决定着系统的稳定性和用户体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00