AzurLaneAutoScript 强化功能异常分析与解决方案
问题背景
在 AzurLaneAutoScript(以下简称 ALAS)的船只强化功能中,当遇到战斗中的船只时,系统会出现重复点击导致的异常退出问题。这个问题主要影响外服玩家,特别是在网络略有卡顿的情况下更容易触发。
问题现象
当 ALAS 尝试强化船只时,如果前几艘需要强化的船只正处于战斗状态,系统会不断尝试点击强化按钮(ENHANCE_RECOMMEND 和 ENHANCE_CONFIRM)。当这两种按钮的点击次数都达到6次时,系统会触发"Too many click between 2 buttons"错误并退出。
技术分析
状态机流程
ALAS 的强化功能采用状态机模式实现,正常强化流程如下:
- state_enhance_check:检查当前船只状态
- state_enhance_ready:准备强化
- state_enhance_recommend:设置推荐强化材料
- state_enhance_attempt:尝试点击强化确认按钮
- state_enhance_confirm:确认强化结果
当遇到战斗中的船只时,流程会变为: state_enhance_recommend → state_enhance_attempt → state_enhance_confirm → state_enhance_fail
重复点击保护机制
ALAS 通过 device.py 中的逻辑防止过多重复点击,规则如下:
- 单一按钮点击超过12次
- 两个按钮各点击超过6次
当前问题触发了第二条规则。
现有保护逻辑的不足
系统原本设计了针对"无材料可强化"情况的保护:
if state_list[-2:] == ["state_enhance_recommend", "state_enhance_fail"]:
self.device.click_record_clear()
但这种保护仅适用于从 state_enhance_recommend 直接到 state_enhance_fail 的情况,无法覆盖因战斗状态导致的强化失败路径。
解决方案
修复方案需要扩展点击记录清除的条件,使其能够识别因战斗状态导致的强化失败。具体应修改为:
if (state_list[-2:] == ["state_enhance_recommend", "state_enhance_fail"] or
state_list[-4:] == ["state_enhance_recommend", "state_enhance_attempt",
"state_enhance_confirm", "state_enhance_fail"]):
self.device.click_record_clear()
这样修改后,系统能够在以下两种情况下清除点击记录:
- 无材料可强化(原逻辑)
- 因战斗状态无法强化(新增逻辑)
实施效果
该修复已合并到主分支并经过一周的测试验证,确认能够有效解决战斗状态下船只强化导致的异常退出问题。用户反馈强化功能现在能够正常跳过战斗中的船只,继续尝试强化其他可用船只,而不会因点击次数过多而意外退出。
总结
通过对 ALAS 强化功能状态机的深入分析和针对性修复,我们解决了因战斗状态船只导致的重复点击问题。这个案例展示了状态机设计中考虑所有可能路径的重要性,以及在实现点击保护机制时需要全面覆盖各种异常情况。对于自动化脚本开发来说,这类边界条件的处理往往决定着系统的稳定性和用户体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00