LMDeploy中InternVL2.5-2B模型量化性能分析
2025-06-03 14:17:18作者:翟萌耘Ralph
量化技术在视觉语言模型中的应用
在部署视觉语言模型(VLM)时,模型量化是一种常用的优化技术,能够显著减少模型大小并提升推理速度。LMDeploy作为一款高效的模型部署工具,支持对InternVL系列模型进行量化处理。
InternVL2.5-2B模型的量化特性
InternVL2.5-2B模型采用了InternLM2.5-1.8B作为其语言模型部分。在实际量化测试中发现,该模型在量化前后推理速度提升不明显,这与8B版本模型量化后速度提升一倍的表现形成鲜明对比。
这种现象主要源于以下技术原因:
-
模型结构特性:VLM模型量化时通常只对语言模型(LLM)部分进行量化处理,视觉部分保持原状。当LLM部分规模较小时,量化带来的计算加速效果会被视觉部分的计算开销所掩盖。
-
规模效应:对于1.8B参数量的语言模型,量化收益相对有限。模型规模越大,量化带来的计算量减少和内存带宽节省效果越明显。
使用注意事项
在使用LMDeploy部署InternVL2.5-2B模型时,需要注意以下配置要点:
-
chat_template设置:必须正确指定为"internvl2_5",否则可能导致输出重复等问题。
-
重复惩罚参数:虽然repetition_penalty等参数可以调整,但正确的chat_template配置才是解决输出重复问题的关键。
-
性能预期管理:对于2B级别的模型,不应期望量化带来与更大模型相同的速度提升幅度。
优化建议
对于追求更高推理效率的场景,可以考虑:
-
使用更大规模的模型(如8B版本),这些模型从量化中获得的收益更为显著。
-
结合其他优化技术,如模型剪枝、知识蒸馏等,与量化技术协同使用。
-
针对特定硬件平台进行优化,充分利用硬件加速特性。
通过理解这些技术细节,开发者可以更合理地选择模型和优化策略,在实际应用中取得最佳的性能平衡。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C093
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
175
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19