JRuby 9.4.10.0版本发布:Ruby 3.1兼容性与性能优化
JRuby作为JVM平台上的Ruby实现,近日发布了9.4.10.0版本。这个版本继续专注于Ruby 3.1的兼容性,同时带来了多项性能优化和功能改进。JRuby通过将Ruby代码编译为Java字节码运行在JVM上,使得Ruby开发者能够充分利用Java生态系统的强大功能。
Ruby兼容性增强
本次更新在Ruby语言兼容性方面有几个重要改进。首先修复了处理heredoc时可能出现的NegativeArraySizeException崩溃问题,这对于处理多行字符串的开发者来说是个重要的稳定性修复。
另一个值得关注的改进是引入了对Ruby 3.3中NoMethodError和NameError行为的可选支持。在Ruby 3.3中,这些错误不再自动检查目标对象,这可以避免在某些情况下导致的内存问题。JRuby现在通过-XnameError.inspect.object=false标志或JVM属性jruby.nameError.inspect.object=false让开发者可以选择启用这一行为。
此外,这个版本还实现了Process.argv0方法,这是近期Bundler版本所依赖的功能,解决了相关兼容性问题。
标准库更新
JRuby 9.4.10.0对其标准库进行了多项更新。jar-dependencies gem现在可以独立于JRuby进行更新,这为依赖管理提供了更大的灵活性。同时,修复了在容器部署中获取jar依赖的问题,提高了在容器化环境中的兼容性。
Psych gem更新到了5.2.3版本,包含了对YAML别名处理的修复,这对于处理复杂YAML文档的开发者来说是个好消息。Reline gem也更新到了0.5.12版本,改进了交互式Ruby shell(IRB)的体验。
Java集成改进
在Java集成方面,这个版本做了几项优化。现在只有来自与JRuby相同类加载器层次结构的JVM类才会被绑定到JRuby包层次结构中的常量,这提高了类加载的安全性。实现Java接口时不再产生常量重定义警告,减少了开发中的干扰信息。
预编译Ruby脚本现在能正确处理优化的同构case/when语句,解决了之前反序列化时可能出现的分支混乱问题。
性能优化
性能方面有几个值得关注的改进。运行时数据结构在JRuby运行时销毁时会被主动清理,这有助于垃圾回收,减少内存占用。Class#subclasses方法经过优化,不再成为复杂ActiveRecord STI查询的瓶颈。
整数乘法运算在超出int64范围时的性能得到提升,消除了频繁异常抛出带来的性能损耗。这些优化对于数值计算密集型应用将带来明显的性能提升。
开发者体验
对于开发者体验,这个版本修复了JRuby shell启动脚本处理路径中包含空格的问题,提高了在复杂路径环境下工作的可靠性。线程转储工具也进行了更新,以适应现代JRuby版本的需求。
总的来说,JRuby 9.4.10.0在稳定性、兼容性和性能方面都做出了有价值的改进,特别是对于需要与Java生态系统集成的Ruby开发者来说,这些更新将带来更好的开发体验和运行效率。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00