manifold-flow 的安装和配置教程
2025-05-21 02:53:38作者:贡沫苏Truman
项目基础介绍
manifold-flow
是一个开源项目,专注于使用流模型进行同时学习数据流形和概率密度。该项目基于一篇学术论文,提出了一种新的生成模型类别,称为流形学习流(Manifold-learning flows 或 ℳ-flows)。这些模型能够同时学习数据流形以及在该流形上的可追踪概率密度。
项目主要使用的编程语言是 Python,同时也包含了一些 Jupyter Notebook 文件,用于实验和数据分析。
项目使用的关键技术和框架
- 流模型(Flow Models):一种生成模型,通过构建可逆的变换来映射一个简单分布(如标准正态分布)到目标数据分布。
- 流形学习(Manifold Learning):一种无监督学习方法,用于学习数据的高维结构在低维流形上的表示。
- 概率密度估计(Density Estimation):估计给定数据的概率密度函数。
- 优化传输(Optimal Transport):一种数学理论,用于最小化两个概率分布之间的距离。
项目依赖于以下几个主要框架和库:
- Python:核心编程语言。
- NumPy:用于数值计算。
- TensorFlow 或 PyTorch:深度学习框架,用于构建和训练模型。
- Matplotlib 和 Seaborn:用于数据可视化。
项目安装和配置的准备工作
在开始安装之前,请确保您的计算机上已经安装了以下软件和依赖项:
- Python(版本 3.6 或更高)。
- pip(Python 包管理器)。
- TensorFlow 或 PyTorch(用于深度学习模型)。
详细安装步骤
-
克隆项目仓库:
打开命令行,执行以下命令来克隆项目仓库:
git clone https://github.com/johannbrehmer/manifold-flow.git cd manifold-flow
-
安装环境依赖:
项目提供了一个
environment.yml
文件,包含了项目所需的 Python 库。如果您使用的是 Conda 环境,可以执行以下命令来创建并激活环境:conda env create -f environment.yml conda activate manifold-flow
如果您不使用 Conda,也可以直接使用 pip 来安装依赖项。打开
requirements.txt
文件,然后逐个安装列出的库:pip install numpy tensorflow matplotlib seaborn jupyter
-
安装可选的优化传输库:
如果您打算使用优化传输训练,还需要安装
geomloss
库。根据项目说明,您可以按照以下步骤安装:# 请参考项目提供的安装指南进行安装
-
验证安装:
运行以下命令,确保所有依赖项都已正确安装:
python -c "import numpy; print('numpy:', numpy.__version__)" python -c "import tensorflow; print('tensorflow:', tensorflow.__version__)" python -c "import matplotlib; print('matplotlib:', matplotlib.__version__)" python -c "import seaborn; print('seaborn:', seaborn.__version__)"
-
开始使用项目:
安装完成后,您可以按照项目
README.md
文件中的说明,开始运行实验和训练模型。# 示例:运行一个训练脚本 python experiments/train.py --algorithm mf --dataset spherical_gaussian
以上就是 manifold-flow
的详细安装和配置指南。祝您使用愉快!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
466

deepin linux kernel
C
22
5

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

openGauss kernel ~ openGauss is an open source relational database management system
C++
133
186

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4