Sentence-Transformers 模型训练中的内存泄漏问题分析与解决
2025-05-13 19:35:29作者:农烁颖Land
问题背景
在使用 Sentence-Transformers 库进行种子优化训练时,开发者发现了一个内存泄漏问题。具体表现为:在 Colab 环境中运行 examples/training/data_augmentation/train_sts_seed_optimization.py
脚本时,每当初始化新的训练器和模型进行下一轮训练时,内存使用量会持续增加,即使显式删除训练器和模型对象后,内存占用仍然居高不下。
问题现象
通过内存监控截图可以观察到两个关键现象:
- 在连续训练过程中,内存使用呈现阶梯式增长
- 即使添加了
del trainer, model
语句手动删除对象,内存释放效果仍不理想
技术分析
经过仓库协作者的深入调查,发现问题根源在于模型卡片数据(trainer)中的循环引用。具体来说:
- 模型对象(model)的
model_card_data
属性中保存了对训练器(trainer)的引用 - 这种引用关系形成了循环引用,导致 Python 的垃圾回收机制无法正常释放内存
- 即使显式删除训练器和模型对象,由于循环引用的存在,内存仍然无法被完全回收
解决方案
协作者提供了两种解决方案:
临时解决方案
在每次训练循环结束时,手动解除模型卡片数据中对训练器的引用:
model.model_card_data.trainer = None
这种方法可以显式打破循环引用,允许垃圾回收器正常工作,显著降低内存占用。
永久修复
仓库协作者表示将发布一个正式补丁来彻底解决此问题。这个补丁可能会在模型或训练器销毁时自动清理相关引用,避免内存泄漏的发生。
最佳实践建议
对于需要进行多次模型初始化的场景(如种子优化),建议:
- 始终监控内存使用情况
- 在训练循环之间添加适当的内存清理代码
- 考虑定期重启内核或进程以彻底释放内存(特别是在Colab等受限环境中)
- 关注库的更新,及时应用修复补丁
技术原理延伸
这个案例很好地展示了Python中循环引用导致的内存泄漏问题。Python使用引用计数和垃圾回收相结合的内存管理机制,但当对象之间存在循环引用时,即使没有外部引用,这些对象也可能无法被自动回收。理解这一点对于开发大型机器学习项目尤为重要,因为模型和训练器通常包含复杂的相互引用关系。
结论
Sentence-Transformers库中的这个内存泄漏问题已经得到确认并将被修复。在此期间,开发者可以采用提供的临时解决方案来缓解内存压力。这个问题也提醒我们,在进行大规模机器学习实验时,内存管理是需要特别关注的方面,适当的监控和清理措施可以避免许多潜在问题。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133