Apache Druid 使用 AWS S3 作为深度存储时的性能优化实践
2025-05-16 16:41:06作者:温艾琴Wonderful
Apache Druid 是一个高性能的实时分析数据库,在数据摄取和查询过程中经常使用云存储服务如 AWS S3 作为深度存储。然而,当 Historical 节点首次加载数据时,可能会遇到从 S3 下载速度远低于预期的问题。
问题现象
在实际部署中,当 Historical 节点首次启动且本地没有任何缓存数据时,从 S3 下载数据的速度可能仅为 50MB/s 左右。相比之下,使用 AWS CLI 工具在相同环境下可以达到 400-500MB/s 的下载速度。这表明 Druid 的默认配置在 S3 数据传输方面存在优化空间。
性能瓶颈分析
通过测试和观察,我们发现以下几个关键点:
- 并发请求限制:Druid 默认的并发下载线程数可能不足以充分利用网络带宽
- HTTP 连接池配置:Coordinator 和 Historical 节点间的通信参数可能限制了并行加载能力
- S3 客户端配置:Druid 使用的 S3 客户端默认参数可能不是最优的
优化方案
经过多次测试和调整,我们确定了以下有效的优化配置:
Coordinator 节点配置
druid.coordinator.loadqueuepeon.http.batchSize=10
这个参数控制 Coordinator 向 Historical 节点发送加载任务时的批量大小。增加此值可以提高任务分发效率。
Historical 节点配置
druid.segmentCache.numLoadingThreads=10
druid.server.http.numThreads=25
其中:
numLoadingThreads控制并行加载 Segment 的线程数http.numThreads设置 HTTP 服务线程池大小,影响节点间通信能力
额外考虑的优化方向
虽然以下配置在测试中未被证实有效,但值得关注:
- S3 多部分上传设置:类似 AWS CLI 的优化思路
- JVM 内存配置:确保 Direct Memory 足够大以支持高效网络传输
- 连接池参数:调整 S3 客户端的最大连接数
实施效果
应用上述优化后,Historical 节点从 S3 加载数据的速度显著提升,基本可以达到与 AWS CLI 相近的性能水平。这大大缩短了集群冷启动或扩容时的数据加载时间。
总结
对于使用 AWS S3 作为深度存储的 Druid 集群,合理调整 Coordinator 和 Historical 节点的并发相关参数是提升初始数据加载性能的关键。建议在生产环境中根据实际网络条件和硬件配置对这些参数进行微调,以达到最佳性能。同时,监控系统资源使用情况(CPU、内存、网络)对于确定最优配置也至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
205
暂无简介
Dart
629
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.62 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
291
103
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
266
仓颉编译器源码及 cjdb 调试工具。
C++
128
858