Mercury Parser API 项目启动与配置教程
2025-04-25 16:21:29作者:凌朦慧Richard
1. 项目的目录结构及介绍
Mercury Parser API 是一个用于解析网页内容的开源项目。以下是项目的目录结构及各部分的作用:
mercury-parser-api/
├── .gitignore # Git 忽略文件,指定不需要提交到版本控制系统的文件
├── Dockerfile # Docker 构建文件,用于创建可运行的容器
├── README.md # 项目说明文件,包含项目信息、安装和使用指南
├── config # 配置文件目录
│ ├── default.json # 默认配置文件
│ └── production.json # 生产环境配置文件
├── package.json # Node.js 项目配置文件,包含项目依赖、脚本等
├── package-lock.json # 依赖锁定文件,确保在不同环境中安装相同的依赖版本
├── src # 源代码目录
│ ├── index.js # 入口文件
│ └── ... # 其他源代码文件
└── ... # 其他可能存在的文件或目录
2. 项目的启动文件介绍
项目的启动文件是 src/index.js,它是项目的入口点。以下是启动文件的基本内容:
// 引入必要的模块
const express = require('express');
const bodyParser = require('body-parser');
const mercury = require('mercury-parser');
// 创建 express 应用
const app = express();
// 配置 bodyParser 以解析请求体
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));
// 设置路由
// ... 这里会有具体的路由设置和逻辑处理
// 启动服务器
const PORT = process.env.PORT || 3000;
app.listen(PORT, () => {
console.log(`Server is running on port ${PORT}`);
});
在 index.js 文件中,开发者会定义 Mercury Parser API 的路由和逻辑处理,使得 API 能够接收请求并返回解析后的网页内容。
3. 项目的配置文件介绍
项目的配置文件位于 config 目录下,包括 default.json 和 production.json。
default.json:默认配置文件,通常用于本地开发环境。它包含一些基本设置,如端口号、数据库连接信息等。
{
"port": 3000,
"database": {
"host": "localhost",
"user": "root",
"password": "",
"database": "mercury_parser"
}
}
production.json:生产环境配置文件,用于项目部署到线上环境。它通常会包含与default.json类似的设置,但会有更适合生产环境的配置,如数据库连接信息、端口号等。
{
"port": 3000,
"database": {
"host": "prod-database-host",
"user": "prod-user",
"password": "prod-password",
"database": "mercury_parser_prod"
}
}
在项目启动时,可以根据环境变量来加载不同的配置文件,以确保项目的正确运行。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248