SqlSugar 批量删除数据时处理参数过多的解决方案
在使用 SqlSugar 进行数据库操作时,开发者经常会遇到需要批量删除数据的情况。当使用 Deleteable 方法配合 WhereColumns 进行无主键删除操作时,如果数据量较大,可能会遇到"too many parameters"的错误。本文将深入分析这个问题,并提供几种有效的解决方案。
问题分析
在 SqlSugar 中,当我们使用以下代码进行批量删除时:
var dcs = _sqlSugarClient.Utilities.DataTableToDictionaryList(dt);
var total = await _sqlSugarClient.Deleteable<object>()
.AS(fullTableName)
.WhereColumns(dcs)
.ExecuteCommandAsync();
如果 dcs 包含的数据量很大,就会导致生成的 SQL 语句包含过多的参数,超出数据库系统允许的参数数量限制,从而抛出"too many parameters"异常。这是因为每个字典项都会转换为 SQL 参数,当数据量大时,参数数量会迅速增加。
解决方案
1. 使用分页批量处理
SqlSugar 提供了 Utilities.PageEachAsync 方法,可以方便地对大数据集进行分页处理:
await db.Utilities.PageEachAsync(allList, 100, async pageList => {
await _sqlSugarClient.Deleteable<object>()
.AS(fullTableName)
.WhereColumns(pageList)
.ExecuteCommandAsync();
});
这种方法将大数据集分割成每页100条记录的小批次进行处理,有效避免了单次操作参数过多的问题。
2. 使用实体操作的 PageSize 方法
如果是针对实体类的删除操作,SqlSugar 提供了更简便的 PageSize 方法:
await _sqlSugarClient.Deleteable<Entity>()
.Where(/*条件*/)
.PageSize(100) // 每批次处理100条
.ExecuteCommandAsync();
这种方法会自动将删除操作分批执行,开发者无需手动处理分页逻辑。
3. 使用原生 SQL 批量删除
对于特别大的数据集,可以考虑使用原生 SQL 语句进行批量删除:
var ids = string.Join(",", dcs.Select(d => d["Id"]));
await _sqlSugarClient.Ado.ExecuteCommandAsync(
$"DELETE FROM {fullTableName} WHERE Id IN ({ids})");
但需要注意 SQL 注入风险和 SQL 语句长度限制。
最佳实践建议
-
合理设置批次大小:根据数据库性能和应用需求,调整每批次处理的数据量,通常在100-1000条之间。
-
事务处理:如果业务需要保证原子性,可以在外层添加事务:
await _sqlSugarClient.Ado.UseTranAsync(async () => {
await db.Utilities.PageEachAsync(allList, 100, async pageList => {
await _sqlSugarClient.Deleteable<object>()
.AS(fullTableName)
.WhereColumns(pageList)
.ExecuteCommandAsync();
});
});
-
性能监控:对于大数据量删除操作,建议添加日志记录执行时间和影响行数,便于性能优化。
-
考虑使用临时表:对于极其复杂的批量删除场景,可以考虑先将需要删除的ID存入临时表,然后通过表连接进行删除。
通过以上方法,开发者可以有效地解决 SqlSugar 批量删除操作中参数过多的问题,同时保证操作的性能和可靠性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00